Canavier CC, Landry RS. (2006). An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. Journal of neurophysiology. 96 [PubMed]
Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW. (2012). Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex. PloS one. 7 [PubMed]
Daw ND, Courville AC, Touretzky DS. (2006). Representation and timing in theories of the dopamine system. Neural computation. 18 [PubMed]
Dougalis AG, Matthews GAC, Liss B, Ungless MA. (2017). Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): A voltage-clamp and computational modelling study. Journal of computational neuroscience. 42 [PubMed]
Durstewitz D. (2006). A few important points about dopamine's role in neural network dynamics. Pharmacopsychiatry. 39 Suppl 1 [PubMed]
Frank MJ. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of cognitive neuroscience. 17 [PubMed]
Frank MJ, Samanta J, Moustafa AA, Sherman SJ. (2007). Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science (New York, N.Y.). 318 [PubMed]
Gillies A, Willshaw D. (2004). Models of the subthalamic nucleus. The importance of intranuclear connectivity. Medical engineering & physics. 26 [PubMed]
Gruber AJ, Dayan P, Gutkin BS, Solla SA. (2006). Dopamine modulation in the basal ganglia locks the gate to working memory. Journal of computational neuroscience. 20 [PubMed]
Gruber AJ, Solla SA, Surmeier DJ, Houk JC. (2003). Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. Journal of neurophysiology. 90 [PubMed]
Grüning A. (2007). Elman backpropagation as reinforcement for simple recurrent networks. Neural computation. 19 [PubMed]
Hazy TE, Frank MJ, O'reilly RC. (2007). Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 362 [PubMed]
Hjorth J, Blackwell KT, Kotaleski JH. (2009). Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]
Humphries MD, Stewart RD, Gurney KN. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Izhikevich EM. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]
Keramati M, Dezfouli A, Piray P. (2011). Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS computational biology. 7 [PubMed]
Knowlton C, Kutterer S, Roeper J, Canavier CC. (2018). Calcium dynamics control K-ATP channel-mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study. Journal of neurophysiology. 119 [PubMed]
Komendantov AO, Komendantova OG, Johnson SW, Canavier CC. (2004). A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. Journal of neurophysiology. 91 [PubMed]
Lindskog M, Kim M, Wikström MA, Blackwell KT, Kotaleski JH. (2006). Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS computational biology. 2 [PubMed]
Morozova EO et al. (2016). Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting. Journal of neurophysiology. 116 [PubMed]
Mozafari M, Kheradpisheh SR, Masquelier T, Nowzari-Dalini A, Ganjtabesh M. (2018). First-Spike-Based Visual Categorization Using Reward-Modulated STDP IEEE Transactions on Neural Networks and Learning Systems.
O'Reilly RC, Frank MJ. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural computation. 18 [PubMed]
O`Reilly RC, Frank MJ. (2005). Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia Neural Comput. 18
Porr B, Wörgötter F. (2007). Learning with "relevance": using a third factor to stabilize Hebbian learning. Neural computation. 19 [PubMed]
Rumbell T, Kozloski J. (2019). Dimensions of control for subthreshold oscillations and spontaneous firing in dopamine neurons PLOS Computational Biology. 15
Wörgötter F, Porr B. (2005). Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural computation. 17 [PubMed]
Yu N, Canavier CC. (2015). A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. Journal of mathematical neuroscience. 5 [PubMed]