Arsiero M, Lüscher HR, Lundstrom BN, Giugliano M. (2007). The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Buckley CL, Nowotny T. (2011). Multiscale model of an inhibitory network shows optimal properties near bifurcation. Physical review letters. 106 [PubMed]
Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35
Gabbiani F, Krapp HG. (2006). Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. Journal of neurophysiology. 96 [PubMed]
Goldberg JA, Deister CA, Wilson CJ. (2007). Response properties and synchronization of rhythmically firing dendritic neurons. Journal of neurophysiology. 97 [PubMed]
Harish O, Golomb D. (2010). Control of the firing patterns of vibrissa motoneurons by modulatory and phasic synaptic inputs: a modeling study. Journal of neurophysiology. 103 [PubMed]
Hayut I, Fanselow EE, Connors BW, Golomb D. (2011). LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS computational biology. 7 [PubMed]
La Camera G, Rauch A, Lüscher HR, Senn W, Fusi S. (2004). Minimal models of adapted neuronal response to in vivo-like input currents. Neural computation. 16 [PubMed]
Laing CR, Longtin A. (2003). Dynamics of deterministic and stochastic paired excitatory-inhibitory delayed feedback. Neural computation. 15 [PubMed]
Linaro D, Couto J, Giugliano M. (2014). Command-line cellular electrophysiology for conventional and real-time closed-loop experiments. Journal of neuroscience methods. 230 [PubMed]
Liu YH, Wang XJ. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of computational neuroscience. 10 [PubMed]
Lánský P, Rodriguez R, Sacerdote L. (2004). Mean instantaneous firing frequency is always higher than the firing rate. Neural computation. 16 [PubMed]
Martinez D. (2005). Oscillatory synchronization requires precise and balanced feedback inhibition in a model of the insect antennal lobe. Neural computation. 17 [PubMed]
Meunier C, Borejsza K. (2005). How membrane properties shape the discharge of motoneurons: a detailed analytical study. Neural computation. 17 [PubMed]
Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ. (2006). Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Rulkov NF, Timofeev I, Bazhenov M. (2004). Oscillations in large-scale cortical networks: map-based model. Journal of computational neuroscience. 17 [PubMed]
Rössert C, Moore LE, Straka H, Glasauer S. (2011). Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Seung HS, Lee DD, Reis BY, Tank DW. (2000). The autapse: a simple illustration of short-term analog memory storage by tuned synaptic feedback. Journal of computational neuroscience. 9 [PubMed]
Sherman AS, Ha J. (2017). How Adaptation Makes Low Firing Rates Robust. Journal of mathematical neuroscience. 7 [PubMed]
Spain WJ, Fairhall AL, Lundstrom BN, Famulare M, Sorensen LB. (2009). Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons J Comput Neurosci. in press
Sweeney Y, Hellgren Kotaleski J, Hennig MH. (2015). A Diffusive Homeostatic Signal Maintains Neural Heterogeneity and Responsiveness in Cortical Networks. PLoS computational biology. 11 [PubMed]
Tabak J, O'Donovan MJ, Rinzel J. (2006). Differential control of active and silent phases in relaxation models of neuronal rhythms. Journal of computational neuroscience. 21 [PubMed]
Wang XJ, Liu Y, Sanchez-Vives MV, McCormick DA. (2003). Adaptation and temporal decorrelation by single neurons in the primary visual cortex. Journal of neurophysiology. 89 [PubMed]