van Vreeswijk C, Sompolinsky H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science (New York, N.Y.). 274 [PubMed]

See more from authors: van Vreeswijk C · Sompolinsky H

References and models cited by this paper
References and models that cite this paper

Ariav G, Polsky A, Schiller J. (2003). Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Arkhipov A et al. (2018). Visual physiology of the layer 4 cortical circuit in silico. PLoS computational biology. 14 [PubMed]

Azouz R, Gray CM. (2008). Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo. The European journal of neuroscience. 28 [PubMed]

Banerjee A. (2006). On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons. Journal of computational neuroscience. 20 [PubMed]

Barak O, Tsodyks M. (2007). Persistent activity in neural networks with dynamic synapses. PLoS computational biology. 3 [PubMed]

Bertschinger N, Natschläger T. (2004). Real-time computation at the edge of chaos in recurrent neural networks. Neural computation. 16 [PubMed]

Brunel N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of computational neuroscience. 8 [PubMed]

Brunel N, Hakim V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural computation. 11 [PubMed]

Brunel N, Wang XJ. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of computational neuroscience. 11 [PubMed]

Bugmann G, Christodoulou C, Clarkson T. (). A Spiking Neuron Model: Applications and Learning. Neural Networks. 15

Diesmann M, Gewaltig MO, Aertsen A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature. 402 [PubMed]

Durstewitz D, Gabriel T. (2007). Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Feng J, Brown D, Feerick S. (1999). Variability of firing of Hodgkin-Huxley and FitzHugh-Nagumo neurons with stochastic synaptic input. Physical Review Letters. 82

Golomb D et al. (2017). Mechanisms underlying a thalamocortical transformation during active tactile sensation PLoS Comput Biol. 13(6)

Haeusler S, Maass W. (2007). A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Hansel D, Mato G. (2003). Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural computation. 15 [PubMed]

Huang C, Zeldenrust F, Celikel T. (2022). Cortical Representation of Touch in Silico Neuroinformatics. 20 [PubMed]

Häusser M, Clark BA. (1997). Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 19 [PubMed]

Izhikevich EM. (2006). Polychronization: computation with spikes. Neural computation. 18 [PubMed]

Jackson BS. (2004). Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Neural computation. 16 [PubMed]

Kanamaru T, Sekine M. (2005). Synchronized firings in the networks of class 1 excitable neurons with excitatory and inhibitory connections and their dependences on the forms of interactions. Neural computation. 17 [PubMed]

Keane A, Henderson JA, Gong P. (2018). Dynamical patterns underlying response properties of cortical circuits. Journal of the Royal Society, Interface. 15 [PubMed]

Kotaleski JH et al. (2011). Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact Front. Syst. Neurosci.. 5:57

Latham PE, Nirenberg S. (2004). Computing and stability in cortical networks. Neural computation. 16 [PubMed]

Lerchner A et al. (2006). Response variability in balanced cortical networks. Neural computation. 18 [PubMed]

Lim S, Goldman MS. (2013). Balanced cortical microcircuitry for maintaining information in working memory. Nature neuroscience. 16 [PubMed]

Lim S, Goldman MS. (2014). Balanced cortical microcircuitry for spatial working memory based on corrective feedback control. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Litvak V, Sompolinsky H, Segev I, Abeles M. (2003). On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Liu YH, Wang XJ. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of computational neuroscience. 10 [PubMed]

London M, Roth A, Beeren L, Häusser M, Latham PE. (2010). Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature. 466 [PubMed]

Markram H et al. (2015). Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 163 [PubMed]

Marre O, Yger P, Davison AP, Frégnac Y. (2009). Reliable recall of spontaneous activity patterns in cortical networks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Masuda N, Aihara K. (2003). Duality of rate coding and temporal coding in multilayered feedforward networks. Neural computation. 15 [PubMed]

Meffin H, Burkitt AN, Grayden DB. (2004). An analytical model for the "large, fluctuating synaptic conductance state" typical of neocortical neurons in vivo. Journal of computational neuroscience. 16 [PubMed]

Miller P, Wang XJ. (2006). Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos (Woodbury, N.Y.). 16 [PubMed]

Miyawaki Y, Okada M. (2004). A network model of perceptual suppression induced by transcranial magnetic stimulation. Neural computation. 16 [PubMed]

Molter C, Salihoglu U, Bersini H. (2007). The road to chaos by time-asymmetric Hebbian learning in recurrent neural networks. Neural computation. 19 [PubMed]

Morrison A, Aertsen A, Diesmann M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural computation. 19 [PubMed]

Muscinelli SP, Gerstner W, Schwalger T. (2019). How single neuron properties shape chaotic dynamics and signal transmission in random neural networks. PLoS computational biology. 15 [PubMed]

Mäki-Marttunen T, Aćimović J, Ruohonen K, Linne ML. (2013). Structure-dynamics relationships in bursting neuronal networks revealed using a prediction framework. PloS one. 8 [PubMed]

Naundorf B, Geisel T, Wolf F. (2005). Action potential onset dynamics and the response speed of neuronal populations. Journal of computational neuroscience. 18 [PubMed]

Pena RFO, Zaks MA, Roque AC. (2018). Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise : Spontaneous activity in networks with synaptic noise. Journal of computational neuroscience. 45 [PubMed]

Potjans TC, Diesmann M. (2014). The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral cortex (New York, N.Y. : 1991). 24 [PubMed]

Renart A, Moreno-Bote R, Wang XJ, Parga N. (2007). Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural computation. 19 [PubMed]

Romani S, Amit DJ, Mongillo G. (2006). Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. Journal of computational neuroscience. 20 [PubMed]

Rudolph M, Destexhe A. (2003). Tuning neocortical pyramidal neurons between integrators and coincidence detectors. Journal of computational neuroscience. 14 [PubMed]

Sadeh S, Clopath C. (2020). Theory of neuronal perturbome in cortical networks Proceedings of the National Academy of Sciences of the United States of America. 117 [PubMed]

Sadeh S, Clopath C, Rotter S. (2015). Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS computational biology. 11 [PubMed]

Sadeh S, Rotter S. (2015). Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics. PLoS computational biology. 11 [PubMed]

Salinas E, Sejnowski TJ. (2001). Correlated neuronal activity and the flow of neural information. Nature reviews. Neuroscience. 2 [PubMed]

Senn W, Fusi S. (2005). Learning only when necessary: better memories of correlated patterns in networks with bounded synapses. Neural computation. 17 [PubMed]

Shelley M, McLaughlin D, Shapley R, Wielaard J. (2002). States of high conductance in a large-scale model of the visual cortex. Journal of computational neuroscience. 13 [PubMed]

Shushruth S et al. (2012). Strong recurrent networks compute the orientation tuning of surround modulation in the primate primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

Soltani A, Wang XJ. (2006). A biophysically based neural model of matching law behavior: melioration by stochastic synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Soula H, Beslon G, Mazet O. (2005). Spontaneous Dynamics of Asymmetric Random Recurrent Spiking Neural Networks Neural Comput. 18

Soula H, Chow CC. (2007). Stochastic dynamics of a finite-size spiking neural network. Neural computation. 19 [PubMed]

Susin E, Destexhe A. (2021). Integration, coincidence detection and resonance in networks of spiking neurons expressing gamma oscillations and asynchronous states PLoS computational biology. 17 [PubMed]

Sussillo D, Abbott LF. (2009). Generating coherent patterns of activity from chaotic neural networks. Neuron. 63 [PubMed]

Tan AY, Andoni S, Priebe NJ. (2013). A spontaneous state of weakly correlated synaptic excitation and inhibition in visual cortex. Neuroscience. 247 [PubMed]

Thomas EA, Bornstein JC. (2003). Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission. Neuroscience. 120 [PubMed]

Tikidji-Hamburyan RA, Leonik CA, Canavier CC. (2019). Phase response theory explains cluster formation in sparsely but strongly connected inhibitory neural networks and effects of jitter due to sparse connectivity. Journal of neurophysiology. 121 [PubMed]

Tomm C, Avermann M, Petersen C, Gerstner W, Vogels TP. (2014). Connection-type-specific biases make uniform random network models consistent with cortical recordings. Journal of neurophysiology. 112 [PubMed]

Tomov P, Pena RF, Roque AC, Zaks MA. (2016). Mechanisms of Self-Sustained Oscillatory States in Hierarchical Modular Networks with Mixtures of Electrophysiological Cell Types. Frontiers in computational neuroscience. 10 [PubMed]

Tomov P, Pena RF, Zaks MA, Roque AC. (2014). Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in computational neuroscience. 8 [PubMed]

Ullah G, Cressman JR, Barreto E, Schiff SJ. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states. II. Network and glial dynamics. Journal of computational neuroscience. 26 [PubMed]

Vogels TP, Abbott LF. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. (2011). Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science (New York, N.Y.). 334 [PubMed]

Wimmer K et al. (2015). Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nature communications. 6 [PubMed]

Wu S, Amari S. (2005). Computing with continuous attractors: stability and online aspects. Neural computation. 17 [PubMed]

Zerlaut Y, Chemla S, Chavane F, Destexhe A. (2018). Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. Journal of computational neuroscience. 44 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.