Neocort. pyramidal cells subthreshold somatic voltage controls spike propagation (Munro Kopell 2012)


Munro E, Kopell N. (2012). Subthreshold somatic voltage in neocortical pyramidal cells can control whether spikes propagate from the axonal plexus to axon terminals: a model study. Journal of neurophysiology. 107 [PubMed]

See more from authors: Munro E · Kopell N

References and models cited by this paper

Acker CD, Antic SD. (2009). Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. Journal of neurophysiology. 101 [PubMed]

Ascoli GA, Donohue DE, Halavi M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Beaulieu C. (1993). Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain research. 609 [PubMed]

Bertram E. (2007). The relevance of kindling for human epilepsy. Epilepsia. 48 Suppl 2 [PubMed]

Boiko T et al. (2003). Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Bragin A, Mody I, Wilson CL, Engel J. (2002). Local generation of fast ripples in epileptic brain. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Bragin A, Wilson CL, Almajano J, Mody I, Engel J. (2004). High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia. 45 [PubMed]

Brecht M, Sakmann B. (2002). Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. The Journal of physiology. 543 [PubMed]

Brosch M, Budinger E, Scheich H. (2002). Stimulus-related gamma oscillations in primate auditory cortex. Journal of neurophysiology. 87 [PubMed]

Brovelli A, Lachaux JP, Kahane P, Boussaoud D. (2005). High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. NeuroImage. 28 [PubMed]

Buhl DL, Harris KD, Hormuzdi SG, Monyer H, Buzsáki G. (2003). Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Buxhoeveden DP, Casanova MF. (2002). The minicolumn hypothesis in neuroscience. Brain : a journal of neurology. 125 [PubMed]

Canolty RT et al. (2007). Spatiotemporal dynamics of word processing in the human brain. Frontiers in neuroscience. 1 [PubMed]

Chang BS, Lowenstein DH. (2003). Epilepsy. The New England journal of medicine. 349 [PubMed]

Chevassus-au-Louis N, Baraban SC, Gaïarsa JL, Ben-Ari Y. (1999). Cortical malformations and epilepsy: new insights from animal models. Epilepsia. 40 [PubMed]

Cheyne D, Bells S, Ferrari P, Gaetz W, Bostan AC. (2008). Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. NeuroImage. 42 [PubMed]

Cox CL, Denk W, Tank DW, Svoboda K. (2000). Action potentials reliably invade axonal arbors of rat neocortical neurons. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]

Crochet S, Petersen CC. (2006). Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature neuroscience. 9 [PubMed]

Crone NE, Sinai A, Korzeniewska A. (2006). High-frequency gamma oscillations and human brain mapping with electrocorticography. Progress in brain research. 159 [PubMed]

Cunningham MO et al. (2004). Coexistence of gamma and high-frequency oscillations in rat medial entorhinal cortex in vitro. The Journal of physiology. 559 [PubMed]

Cvap Cvapp. (). http:--www.compneuro.org-CDROM-docs-cvapp.html.

Debanne D. (2004). Information processing in the axon. Nature reviews. Neuroscience. 5 [PubMed]

Debanne D, Guérineau NC, Gähwiler BH, Thompson SM. (1997). Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus. Nature. 389 [PubMed]

Draguhn A, Traub RD, Schmitz D, Jefferys JG. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature. 394 [PubMed]

Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT. (2005). High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. Journal of neurophysiology. 94 [PubMed]

Edwards E et al. (2009). Comparison of time-frequency responses and the event-related potential to auditory speech stimuli in human cortex. Journal of neurophysiology. 102 [PubMed]

Engel J. (1996). Introduction to temporal lobe epilepsy. Epilepsy research. 26 [PubMed]

Engel J, Bragin A, Staba R, Mody I. (2009). High-frequency oscillations: what is normal and what is not? Epilepsia. 50 [PubMed]

Erdos P, Renyi A. (1960). On the evolution of random graphs Publ Math Instit Hungar Acad Sci. 5

Feldman ML, Peters A. (1974). A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain research. 77 [PubMed]

Gansert J, Golowasch J, Nadim F. (2007). Sustained rhythmic activity in gap-junctionally coupled networks of model neurons depends on the diameter of coupled dendrites. Journal of neurophysiology. 98 [PubMed]

Gaona CM et al. (2011). Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Goldstein SS, Rall W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophysical journal. 14 [PubMed]

Goodenough DA, Paul DL. (2009). Gap junctions. Cold Spring Harbor perspectives in biology. 1 [PubMed]

Grenier F, Timofeev I, Steriade M. (2001). Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates. Journal of neurophysiology. 86 [PubMed]

Grenier F, Timofeev I, Steriade M. (2003). Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates. Journal of neurophysiology. 89 [PubMed]

Gutnick MJ, Lobel-Yaakov R, Rimon G. (1985). Incidence of neuronal dye-coupling in neocortical slices depends on the plane of section. Neuroscience. 15 [PubMed]

Gutnick MJ, Prince DA. (1981). Dye coupling and possible electrotonic coupling in the guinea pig neocortical slice. Science (New York, N.Y.). 211 [PubMed]

Hamzei-Sichani F et al. (2007). Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]

Hines ML, Carnevale NT. (2006). The NEURON Book.

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM. (2004). ModelDB: A Database to Support Computational Neuroscience. Journal of computational neuroscience. 17 [PubMed]

Hormuzdi SG et al. (2001). Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron. 31 [PubMed]

Hromádka T, Zador AM. (2009). Representations in auditory cortex. Current opinion in neurobiology. 19 [PubMed]

Jacobs J, Kahana MJ. (2009). Neural representations of individual stimuli in humans revealed by gamma-band electrocorticographic activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Jones MS, Barth DS. (1999). Spatiotemporal organization of fast (>200 Hz) electrical oscillations in rat Vibrissa/Barrel cortex. Journal of neurophysiology. 82 [PubMed]

Jones MS, MacDonald KD, Choi B, Dudek FE, Barth DS. (2000). Intracellular correlates of fast (>200 Hz) electrical oscillations in rat somatosensory cortex. Journal of neurophysiology. 84 [PubMed]

Katzner S et al. (2009). Local origin of field potentials in visual cortex. Neuron. 61 [PubMed]

Koester HJ, Sakmann B. (2000). Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. The Journal of physiology. 529 Pt 3 [PubMed]

Kole MH et al. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature neuroscience. 11 [PubMed]

Lewis TJ, Rinzel J. (2000). Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Network (Bristol, England). 11 [PubMed]

Lorincz A, Nusser Z. (2008). Cell-type-dependent molecular composition of the axon initial segment. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Lu L, Chung F. (2002). Connected components in random graphs with given expected degree sequences Ann Comb. 6

MATLA MATLAB. (). http:--www.mathworks.com-products-matlab-.

Maier N et al. (2002). Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. The Journal of physiology. 541 [PubMed]

Margrie TW, Brecht M, Sakmann B. (2002). In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Archiv : European journal of physiology. 444 [PubMed]

Mercer A, Bannister AP, Thomson AM. (2006). Electrical coupling between pyramidal cells in adult cortical regions. Brain cell biology. 35 [PubMed]

Milojkovic BA, Wuskell JP, Loew LM, Antic SD. (2005). Initiation of sodium spikelets in basal dendrites of neocortical pyramidal neurons. The Journal of membrane biology. 208 [PubMed]

Mountcastle VB. (1997). The columnar organization of the neocortex. Brain : a journal of neurology. 120 ( Pt 4) [PubMed]

Mountcastle VB. (2003). Introduction. Computation in cortical columns. Cerebral cortex (New York, N.Y. : 1991). 13 [PubMed]

Munro E, Börgers C. (2010). Mechanisms of very fast oscillations in networks of axons coupled by gap junctions. Journal of computational neuroscience. 28 [PubMed]

Murakami S, Zhang T, Hirose A, Okada YC. (2002). Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices. The Journal of physiology. 544 [PubMed]

NEURO NEURON. (). http:--www.neuron.yale.edu-neuron-.

Nadim F, Golowasch J. (2006). Signal transmission between gap-junctionally coupled passive cables is most effective at an optimal diameter. Journal of neurophysiology. 95 [PubMed]

NeuroMorphoOr NeuroMorphoOrg. (). http:--NeuroMorpho.org.

Newman ME. (2003). Random graphs as models of networks Handbook of Graphs and Networks: From the Genome to the Internet. 2

Nimmrich V, Maier N, Schmitz D, Draguhn A. (2005). Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. The Journal of physiology. 563 [PubMed]

Palmer LM, Stuart GJ. (2006). Site of action potential initiation in layer 5 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Parker PR, Cruikshank SJ, Connors BW. (2009). Stability of electrical coupling despite massive developmental changes of intrinsic neuronal physiology. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Pei X et al. (2011). Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. NeuroImage. 54 [PubMed]

Pitkänen A, McIntosh TK. (2006). Animal models of post-traumatic epilepsy. Journal of neurotrauma. 23 [PubMed]

Rakic P. (2008). Confusing cortical columns. Proceedings of the National Academy of Sciences of the United States of America. 105 [PubMed]

Rinzel J, Lewis TJ. (2001). Topological target patterns and population oscillations in a network with random gap junctional coupling Neurocomputing. 38-40

Rockland KS, Ichinohe N. (2004). Some thoughts on cortical minicolumns. Experimental brain research. 158 [PubMed]

Roland J, Brunner P, Johnston J, Schalk G, Leuthardt EC. (2010). Passive real-time identification of speech and motor cortex during an awake craniotomy. Epilepsy & behavior : E&B. 18 [PubMed]

Roopun AK et al. (2010). A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex. Proceedings of the National Academy of Sciences of the United States of America. 107 [PubMed]

Salazar AM et al. (1985). Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. Neurology. 35 [PubMed]

Salin P, Tseng GF, Hoffman S, Parada I, Prince DA. (1995). Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

Scharfman HE. (2007). The neurobiology of epilepsy. Current neurology and neuroscience reports. 7 [PubMed]

Schmidt-Hieber C, Jonas P, Bischofberger J. (2008). Action potential initiation and propagation in hippocampal mossy fibre axons. The Journal of physiology. 586 [PubMed]

Schmitz D et al. (2001). Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron. 31 [PubMed]

Schubert D, Kötter R, Luhmann HJ, Staiger JF. (2006). Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. Cerebral cortex (New York, N.Y. : 1991). 16 [PubMed]

Scorcioni R, Polavaram S, Ascoli GA. (2008). L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature protocols. 3 [PubMed]

Shepherd GM, Svoboda K. (2005). Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Shu Y, Duque A, Yu Y, Haider B, McCormick DA. (2007). Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. Journal of neurophysiology. 97 [PubMed]

Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. (2006). Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature. 441 [PubMed]

Shu Y, Yu Y, Yang J, McCormick DA. (2007). Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]

Skoglund TS, Pascher R, Berthold CH. (1996). Heterogeneity in the columnar number of neurons in different neocortical areas in the rat. Neuroscience letters. 208 [PubMed]

Sloper JJ, Powell TP. (1979). A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 285 [PubMed]

Staba RJ, Bergmann PC, Barth DS. (2004). Dissociation of slow waves and fast oscillations above 200 Hz during GABA application in rat somatosensory cortex. The Journal of physiology. 561 [PubMed]

Staba RJ et al. (2004). High-frequency oscillations recorded in human medial temporal lobe during sleep. Annals of neurology. 56 [PubMed]

Stacey WC, Lazarewicz MT, Litt B. (2009). Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model. Journal of neurophysiology. 102 [PubMed]

Staiger JF et al. (2004). Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cerebral cortex (New York, N.Y. : 1991). 14 [PubMed]

Steriade M, Nuñez A, Amzica F. (1993). A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Steriade M, Timofeev I, Grenier F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of neurophysiology. 85 [PubMed]

Sutor B, Hagerty T. (2005). Involvement of gap junctions in the development of the neocortex. Biochimica et biophysica acta. 1719 [PubMed]

Teskey GC, Valentine PA. (1998). Post-activation potentiation in the neocortex of awake freely moving rats. Neuroscience and biobehavioral reviews. 22 [PubMed]

Timofeev I, Grenier F, Steriade M. (2001). Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proceedings of the National Academy of Sciences of the United States of America. 98 [PubMed]

Traub RD. (2003). Fast Oscillations and Epilepsy. Epilepsy currents. 3 [PubMed]

Traub RD et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of neurophysiology. 93 [PubMed]

Traub RD, Contreras D, Whittington MA. (2005). Combined experimental/simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 22 [PubMed]

Traub RD et al. (2003). GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]

Traub RD et al. (2010). Spatiotemporal patterns of electrocorticographic very fast oscillations (> 80 Hz) consistent with a network model based on electrical coupling between principal neurons. Epilepsia. 51 [PubMed]

Traub RD et al. (2003). Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]

Traub RD, Schmitz D, Jefferys JG, Draguhn A. (1999). High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience. 92 [PubMed]

Traub RD et al. (2001). A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia. 42 [PubMed]

Tsumoto T. (1990). Long-term potentiation and depression in the cerebral neocortex. The Japanese journal of physiology. 40 [PubMed]

Tuckwell HC. (1988). Introduction To Theoretical Neurobiology: Vol 1, Linear Cable Theory And Dendritic Structure. 1

Urrestarazu E, Chander R, Dubeau F, Gotman J. (2007). Interictal high-frequency oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients. Brain : a journal of neurology. 130 [PubMed]

Wang W et al. (2009). Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2009 [PubMed]

Wang Y, Barakat A, Zhou H. (2010). Electrotonic coupling between pyramidal neurons in the neocortex. PloS one. 5 [PubMed]

Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H. (2002). Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral cortex (New York, N.Y. : 1991). 12 [PubMed]

Wang Y, Zhang G, Zhou H, Barakat A, Querfurth H. (2009). Opposite effects of low and high doses of Abeta42 on electrical network and neuronal excitability in the rat prefrontal cortex. PloS one. 4 [PubMed]

Waxman SG, Kocsis JD, Stys PK. (1995). The axon: structure, function and pathophysiology.

Worrell GA et al. (2008). High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain : a journal of neurology. 131 [PubMed]

Worrell GA et al. (2004). High-frequency oscillations and seizure generation in neocortical epilepsy. Brain : a journal of neurology. 127 [PubMed]

Ylinen A et al. (1995). Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

References and models that cite this paper

Vladimirov N, Tu Y, Traub RD. (2013). Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study. The European journal of neuroscience. 38 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.