Software (called Optimizer) for fitting neuronal models (Friedrich et al. 2014)


Friedrich P, Vella M, Gulyás AI, Freund TF, Káli S. (2014). A flexible, interactive software tool for fitting the parameters of neuronal models. Frontiers in neuroinformatics. 8 [PubMed]

See more from authors: Friedrich P · Vella M · Gulyás AI · Freund TF · Káli S

References and models cited by this paper

Bahl A, Stemmler MB, Herz AV, Roth A. (2012). Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. Journal of neuroscience methods. 210 [PubMed]

Bower JM, Beeman D. (1998). The Book Of Genesis: Exploring Realistic Neural Models With The General Neural Simulation System.

Brent RP. (2002). Algorithms for Minimization Without Derivatives.

Cornelis H, Rodriguez AL, Coop AD, Bower JM. (2012). Python as a federation tool for GENESIS 3.0. PloS one. 7 [PubMed]

Davison AP et al. (2008). PyNN: A Common Interface for Neuronal Network Simulators. Frontiers in neuroinformatics. 2 [PubMed]

De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of neurophysiology. 71 [PubMed]

De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. Journal of neurophysiology. 71 [PubMed]

Druckmann S et al. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in neuroscience. 1 [PubMed]

Druckmann S et al. (2008). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological cybernetics. 99 [PubMed]

Eichner H, Borst A. (2011). Hands-on parameter search for neural simulations by a MIDI-controller. PloS one. 6 [PubMed]

Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO. (2008). PyNEST: A Convenient Interface to the NEST Simulator. Frontiers in neuroinformatics. 2 [PubMed]

Garcia S et al. (2014). Neo: an object model for handling electrophysiology data in multiple formats. Frontiers in neuroinformatics. 8 [PubMed]

Gerstner W, Naud R. (2009). Neuroscience. How good are neuron models? Science (New York, N.Y.). 326 [PubMed]

Gleeson P et al. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS computational biology. 6 [PubMed]

Goodman DF, Brette R. (2009). The brian simulator. Frontiers in neuroscience. 3 [PubMed]

Gurkiewicz M, Korngreen A. (2007). A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm. PLoS computational biology. 3 [PubMed]

Hay E, Hill S, Schürmann F, Markram H, Segev I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS computational biology. 7 [PubMed]

Hendrickson EB, Edgerton JR, Jaeger D. (2011). The use of automated parameter searches to improve ion channel kinetics for neural modeling. Journal of computational neuroscience. 31 [PubMed]

Hines ML, Carnevale NT. (2006). The NEURON Book.

Hines ML, Davison AP, Muller E. (2009). NEURON and Python. Frontiers in neuroinformatics. 3 [PubMed]

Huys QJ, Ahrens MB, Paninski L. (2006). Efficient estimation of detailed single-neuron models. Journal of neurophysiology. 96 [PubMed]

Huys QJ, Paninski L. (2009). Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS computational biology. 5 [PubMed]

Keren N, Peled N, Korngreen A. (2005). Constraining compartmental models using multiple voltage recordings and genetic algorithms. Journal of neurophysiology. 94 [PubMed]

Kirkpatrick S, Gelatt CD, Vecchi MP. (1983). Optimization by simulated annealing. Science (New York, N.Y.). 220 [PubMed]

Káli S, Freund TF. (2005). Distinct properties of two major excitatory inputs to hippocampal pyramidal cells: a computational study. The European journal of neuroscience. 22 [PubMed]

Naud R, Marcille N, Clopath C, Gerstner W. (2008). Firing patterns in the adaptive exponential integrate-and-fire model. Biological cybernetics. 99 [PubMed]

Nelder JA, Mead J. (1965). A simplex algorithm for function minimization Computer J. 7

Nocedal J, Byrd RH, Lu P, Zhu C. (1995). A limited memory algorithm for bound constrained optimization Siam J Sci Comput. 16

Poirazi P, Brannon T, Mel BW. (2003). Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 37 [PubMed]

Rossant C et al. (2011). Fitting neuron models to spike trains. Frontiers in neuroscience. 5 [PubMed]

Rossant C, Goodman DF, Platkiewicz J, Brette R. (2010). Automatic fitting of spiking neuron models to electrophysiological recordings. Frontiers in neuroinformatics. 4 [PubMed]

Svensson CM, Coombes S, Peirce JW. (2012). Using evolutionary algorithms for fitting high-dimensional models to neuronal data. Neuroinformatics. 10 [PubMed]

Van Geit W, Achard P, De Schutter E. (2007). Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in neuroinformatics. 1 [PubMed]

Van Geit W, De Schutter E, Achard P. (2008). Automated neuron model optimization techniques: a review. Biological cybernetics. 99 [PubMed]

Vanier MC, Bower JM. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of computational neuroscience. 7 [PubMed]

Vavoulis DV, Straub VA, Aston JA, Feng J. (2012). A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons. PLoS computational biology. 8 [PubMed]

References and models that cite this paper

Jȩdrzejewski-Szmek Z, Abrahao KP, Jȩdrzejewska-Szmek J, Lovinger DM, Blackwell KT. (2018). Parameter Optimization Using Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES), an Approach to Investigate Differences in Channel Properties Between Neuron Subtypes. Frontiers in neuroinformatics. 12 [PubMed]

Rumbell TH et al. (2016). Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons. Journal of computational neuroscience. 41 [PubMed]

Ujfalussy BB, Makara JK, Lengyel M, Branco T. (2018). Global and Multiplexed Dendritic Computations under In Vivo-like Conditions. Neuron. 100 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.