Papoutsi A, Sidiropoulou K, Poirazi P. (2014). Dendritic nonlinearities reduce network size requirements and mediate ON and OFF states of persistent activity in a PFC microcircuit model. PLoS computational biology. 10 [PubMed]

See more from authors: Papoutsi A · Sidiropoulou K · Poirazi P

References and models cited by this paper

Balleine BW, Leung BK, Ostlund SB. (2011). The orbitofrontal cortex, predicted value, and choice. Annals of the New York Academy of Sciences. 1239 [PubMed]

Börgers C, Talei Franzesi G, Lebeau FE, Boyden ES, Kopell NJ. (2012). Minimal size of cell assemblies coordinated by gamma oscillations. PLoS computational biology. 8 [PubMed]

Chalifoux JR, Carter AG. (2011). Glutamate spillover promotes the generation of NMDA spikes. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Compte A. (2006). Computational and in vitro studies of persistent activity: edging towards cellular and synaptic mechanisms of working memory. Neuroscience. 139 [PubMed]

Compte A, Brunel N, Goldman-Rakic PS, Wang XJ. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral cortex (New York, N.Y. : 1991). 10 [PubMed]

Crochet S, Poulet JF, Kremer Y, Petersen CC. (2011). Synaptic mechanisms underlying sparse coding of active touch. Neuron. 69 [PubMed]

Diester I, Nieder A. (2008). Complementary contributions of prefrontal neuron classes in abstract numerical categorization. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Egorov AV, Hamam BN, Fransén E, Hasselmo ME, Alonso AA. (2002). Graded persistent activity in entorhinal cortex neurons. Nature. 420 [PubMed]

Feldt S, Bonifazi P, Cossart R. (2011). Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights. Trends in neurosciences. 34 [PubMed]

Funahashi S, Bruce CJ, Goldman-Rakic PS. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of neurophysiology. 61 [PubMed]

Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CC. (2010). Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron. 65 [PubMed]

Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB. (2001). Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. Journal of computational neuroscience. 11 [PubMed]

Haider B, Duque A, Hasenstaub AR, McCormick DA. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Hines ML, Carnevale NT. (2001). NEURON: a tool for neuroscientists. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 7 [PubMed]

Ko H et al. (2011). Functional specificity of local synaptic connections in neocortical networks. Nature. 473 [PubMed]

Kuroda M, Yokofujita J, Murakami K. (1998). An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Progress in neurobiology. 54 [PubMed]

Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J. (2009). Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science (New York, N.Y.). 325 [PubMed]

Lau PM, Bi GQ. (2005). Synaptic mechanisms of persistent reverberatory activity in neuronal networks. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]

Lewis DA, Gonzalez-Burgos G. (2006). Pathophysiologically based treatment interventions in schizophrenia. Nature medicine. 12 [PubMed]

Li CY, Poo MM, Dan Y. (2009). Burst spiking of a single cortical neuron modifies global brain state. Science (New York, N.Y.). 324 [PubMed]

Lim S, Goldman MS. (2013). Balanced cortical microcircuitry for maintaining information in working memory. Nature neuroscience. 16 [PubMed]

Litwin-Kumar A, Doiron B. (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature neuroscience. 15 [PubMed]

Major G, Larkum ME, Schiller J. (2013). Active properties of neocortical pyramidal neuron dendrites. Annual review of neuroscience. 36 [PubMed]

Major G, Polsky A, Denk W, Schiller J, Tank DW. (2008). Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. Journal of neurophysiology. 99 [PubMed]

Mann EO, Kohl MM, Paulsen O. (2009). Distinct roles of GABA(A) and GABA(B) receptors in balancing and terminating persistent cortical activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

McCormick DA et al. (2003). Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cerebral cortex (New York, N.Y. : 1991). 13 [PubMed]

Miller EK. (2000). The prefrontal cortex and cognitive control. Nature reviews. Neuroscience. 1 [PubMed]

Miller EK, Erickson CA, Desimone R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

Milojkovic BA, Zhou WL, Antic SD. (2007). Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. The Journal of physiology. 585 [PubMed]

Murayama M et al. (2009). Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature. 457 [PubMed]

Myme CI, Sugino K, Turrigiano GG, Nelson SB. (2003). The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. Journal of neurophysiology. 90 [PubMed]

Oikonomou KD, Short SM, Rich MT, Antic SD. (2012). Extrasynaptic glutamate receptor activation as cellular bases for dynamic range compression in pyramidal neurons. Frontiers in physiology. 3 [PubMed]

Oswald AM, Doiron B, Rinzel J, Reyes AD. (2009). Spatial profile and differential recruitment of GABAB modulate oscillatory activity in auditory cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Otsuka T, Kawaguchi Y. (2008). Firing-pattern-dependent specificity of cortical excitatory feed-forward subnetworks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Palmer LM et al. (2014). NMDA spikes enhance action potential generation during sensory input. Nature neuroscience. 17 [PubMed]

Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P. (2013). Induction and modulation of persistent activity in a layer V PFC microcircuit model. Frontiers in neural circuits. 7 [PubMed]

Perin R, Telefont M, Markram H. (2013). Computing the size and number of neuronal clusters in local circuits. Frontiers in neuroanatomy. 7 [PubMed]

Petreanu L, Mao T, Sternson SM, Svoboda K. (2009). The subcellular organization of neocortical excitatory connections. Nature. 457 [PubMed]

Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP. (2009). Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature neuroscience. 12 [PubMed]

Sanchez-Vives MV, McCormick DA. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature neuroscience. 3 [PubMed]

Sanders H, Berends M, Major G, Goldman MS, Lisman JE. (2013). NMDA and GABAB (KIR) conductances: the "perfect couple" for bistability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Schiller J, Major G, Koester HJ, Schiller Y. (2000). NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature. 404 [PubMed]

Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ. (2001). Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proceedings of the National Academy of Sciences of the United States of America. 98 [PubMed]

Seung HS. (2009). Reading the book of memory: sparse sampling versus dense mapping of connectomes. Neuron. 62 [PubMed]

Shu Y, Hasenstaub A, McCormick DA. (2003). Turning on and off recurrent balanced cortical activity. Nature. 423 [PubMed]

Sidiropoulou K et al. (2009). Dopamine modulates an mGluR5-mediated depolarization underlying prefrontal persistent activity. Nature neuroscience. 12 [PubMed]

Sidiropoulou K, Poirazi P. (2012). Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS computational biology. 8 [PubMed]

Smith SL, Smith IT, Branco T, Häusser M. (2013). Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature. 503 [PubMed]

Tseng KY, O'Donnell P. (2005). Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. Cerebral cortex (New York, N.Y. : 1991). 15 [PubMed]

Tziridis K, Dicke PW, Thier P. (2009). The role of the monkey dorsal pontine nuclei in goal-directed eye and hand movements. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Wang H, Stradtman GG, Wang XJ, Gao WJ. (2008). A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America. 105 [PubMed]

Wang J, O'Donnell P. (2001). D(1) dopamine receptors potentiate nmda-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cerebral cortex (New York, N.Y. : 1991). 11 [PubMed]

Wang M et al. (2013). NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron. 77 [PubMed]

Wang XJ. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Wang Y et al. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience. 9 [PubMed]

Winograd M, Destexhe A, Sanchez-Vives MV. (2008). Hyperpolarization-activated graded persistent activity in the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America. 105 [PubMed]

Xu NL et al. (2012). Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature. 492 [PubMed]

Yamada M, Pita MC, Iijima T, Tsutsui K. (2010). Rule-dependent anticipatory activity in prefrontal neurons. Neuroscience research. 67 [PubMed]

Yamashita T et al. (2013). Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron. 80 [PubMed]

Yassin L et al. (2010). An embedded subnetwork of highly active neurons in the neocortex. Neuron. 68 [PubMed]

Yoshimura Y, Dantzker JL, Callaway EM. (2005). Excitatory cortical neurons form fine-scale functional networks. Nature. 433 [PubMed]

van Wingerden M et al. (2012). NMDA receptors control cue-outcome selectivity and plasticity of orbitofrontal firing patterns during associative stimulus-reward learning. Neuron. 76 [PubMed]

References and models that cite this paper

Neymotin SA et al. (2016). Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience. 316 [PubMed]

Papoutsi A, Kastellakis G, Poirazi P. (2017). Basal tree complexity shapes functional pathways in the prefrontal cortex. Journal of neurophysiology. 118 [PubMed]

Park J et al. (2019). Contribution of apical and basal dendrites to orientation encoding in mouse V1 L2/3 pyramidal neurons Nature Communications. 10

Schmidt-Hieber C et al. (2017). Active dendritic integration as a mechanism for robust and precise grid cell firing. Nature neuroscience. 20 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.