Baker PM, Pennefather PS, Orser BA, Skinner FK. (2002). Disruption of coherent oscillations in inhibitory networks with anesthetics: role of GABA(A) receptor desensitization. Journal of neurophysiology. 88 [PubMed]
Bartos M et al. (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]
Börgers C, Epstein S, Kopell NJ. (2005). Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]
Börgers C, Kopell N. (2005). Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural computation. 17 [PubMed]
Chartove JA, McCarthy MM, Pittman-Polletta BR, Kopell NJ. (2020). A biophysical model of striatal microcircuits suggests gamma and beta oscillations interleaved at delta/theta frequencies mediate periodicity in motor control PLOS Computational Biology. 16
Chow CC, Kopell N. (2000). Dynamics of spiking neurons with electrical coupling. Neural computation. 12 [PubMed]
Cohen MX. (2014). Fluctuations in oscillation frequency control spike timing and coordinate neural networks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]
Ermentrout B, Saunders D. (2006). Phase resetting and coupling of noisy neural oscillators. Journal of computational neuroscience. 20 [PubMed]
Hansel D, Mato G. (2003). Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural computation. 15 [PubMed]
Jalil S, Grigull J, Skinner FK. (2004). Novel bursting patterns emerging from model inhibitory networks with synaptic depression. Journal of computational neuroscience. 17 [PubMed]
Kopell N, Rotstein HG, Clewley R. (2005). A Computational Tool for the Reduction of Nonlinear ODE Systems Possessing Multiple Scales Multiscale modeling & simulation. 4(3)
Lee S, Jones SR. (2013). Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network. Frontiers in human neuroscience. 7 [PubMed]
Malerba P, Krishnan GP, Fellous JM, Bazhenov M. (2016). Hippocampal CA1 Ripples as Inhibitory Transients. PLoS computational biology. 12 [PubMed]
Martinez D. (2005). Oscillatory synchronization requires precise and balanced feedback inhibition in a model of the insect antennal lobe. Neural computation. 17 [PubMed]
Olufsen MS, Whittington MA, Camperi M, Kopell N. (2003). New roles for the gamma rhythm: population tuning and preprocessing for the Beta rhythm. Journal of computational neuroscience. 14 [PubMed]
Pinto DJ, Jones SR, Kaper TJ, Kopell N. (2003). Analysis of State-Dependent Transitions in Frequency and Long-Distance Coordination in a Model Oscillatory Cortical Circuit Journal of computational neuroscience. 15 [PubMed]
Rich S et al. (2019). Inhibitory Network Bistability Explains Increased Interneuronal Activity Prior to Seizure Onset. Frontiers in neural circuits. 13 [PubMed]
Rotstein HG et al. (2005). Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. Journal of neurophysiology. 94 [PubMed]
Sohal VS, Huguenard JR. (2005). Inhibitory coupling specifically generates emergent gamma oscillations in diverse cell types. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]
Talathi SS, Carney PR, Khargonekar PP. (2011). Control of neural synchrony using channelrhodopsin-2: a computational study. Journal of computational neuroscience. 31 [PubMed]
Taxidis J, Coombes S, Mason R, Owen MR. (2012). Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus. 22 [PubMed]
Tikidji-Hamburyan RA, Canavier CC. (2020). Shunting Inhibition Improves Synchronization in Heterogeneous Inhibitory Interneuronal Networks with Type 1 Excitability Whereas Hyperpolarizing Inhibition is Better for Type 2 Excitability. eNeuro. 7 [PubMed]
Tikidji-Hamburyan RA, Leonik CA, Canavier CC. (2019). Phase response theory explains cluster formation in sparsely but strongly connected inhibitory neural networks and effects of jitter due to sparse connectivity. Journal of neurophysiology. 121 [PubMed]
Tikidji-Hamburyan RA, Martínez JJ, White JA, Canavier CC. (2015). Resonant Interneurons Can Increase Robustness of Gamma Oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]