Bal T, McCormick DA. (1996). What stops synchronized thalamocortical oscillations? Neuron. 17 [PubMed]
Contreras D, Timofeev I, Steriade M. (1996). Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. The Journal of physiology. 494 ( Pt 1) [PubMed]
Cox CL, Huguenard JR, Prince DA. (1997). Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus. Proceedings of the National Academy of Sciences of the United States of America. 94 [PubMed]
Destexhe A. (2000). Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. Journal of physiology, Paris. 94 [PubMed]
Destexhe A, Contreras D, Steriade M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of neurophysiology. 79 [PubMed]
Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR. (1996). In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]
Destexhe A, Neubig M, Ulrich D, Huguenard J. (1998). Dendritic low-threshold calcium currents in thalamic relay cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]
Erişir A, Van Horn SC, Bickford ME, Sherman SM. (1997). Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. The Journal of comparative neurology. 377 [PubMed]
Erişir A, Van Horn SC, Sherman SM. (1997). Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proceedings of the National Academy of Sciences of the United States of America. 94 [PubMed]
Godwin DW, Vaughan JW, Sherman SM. (1996). Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. Journal of neurophysiology. 76 [PubMed]
Golshani P, Liu XB, Jones EG. (2001). Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons. Proceedings of the National Academy of Sciences of the United States of America. 98 [PubMed]
Guido W, Lu SM, Sherman SM. (1992). Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. Journal of neurophysiology. 68 [PubMed]
Guido W, Weyand T. (1995). Burst responses in thalamic relay cells of the awake behaving cat. Journal of neurophysiology. 74 [PubMed]
Guillery RW. (1969). A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat Z Zellforsh Mikrosk Anat. 96
HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]
Hamos JE, Van Horn SC, Raczkowski D, Sherman SM. (1987). Synaptic circuits involving an individual retinogeniculate axon in the cat. The Journal of comparative neurology. 259 [PubMed]
Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]
Huguenard JR, Prince DA. (1992). A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 12 [PubMed]
Jones EG. (1985). The Thalamus.
Kim U, Sanchez-Vives MV, McCormick DA. (1997). Functional dynamics of GABAergic inhibition in the thalamus. Science (New York, N.Y.). 278 [PubMed]
Landisman CE et al. (2002). Electrical synapses in the thalamic reticular nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Le Feuvre Y, Fricker D, Leresche N. (1997). GABAA receptor-mediated IPSCs in rat thalamic sensory nuclei: patterns of discharge and tonic modulation by GABAB autoreceptors. The Journal of physiology. 502 ( Pt 1) [PubMed]
Liu XB, Honda CN, Jones EG. (1995). Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. The Journal of comparative neurology. 352 [PubMed]
Liu XB, Jones EG. (1999). Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat. The Journal of comparative neurology. 414 [PubMed]
Livingstone MS, Hubel DH. (1981). Effects of sleep and arousal on the processing of visual information in the cat. Nature. 291 [PubMed]
Llinás R, Jahnsen H. (1982). Electrophysiology of mammalian thalamic neurones in vitro. Nature. 297 [PubMed]
McCormick DA. (1992). Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progress in neurobiology. 39 [PubMed]
McCormick DA, Feeser HR. (1990). Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience. 39 [PubMed]
McCormick DA, von Krosigk M. (1992). Corticothalamic activation modulates thalamic firing through glutamate "metabotropic" receptors. Proceedings of the National Academy of Sciences of the United States of America. 89 [PubMed]
Mulle C, Madariaga A, Deschênes M. (1986). Morphology and electrophysiological properties of reticularis thalami neurons in cat: in vivo study of a thalamic pacemaker. The Journal of neuroscience : the official journal of the Society for Neuroscience. 6 [PubMed]
Paulsen O, Heggelund P. (1994). The quantal size at retinogeniculate synapses determined from spontaneous and evoked EPSCs in guinea-pig thalamic slices. The Journal of physiology. 480 ( Pt 3) [PubMed]
Paulsen O, Heggelund P. (1996). Quantal properties of spontaneous EPSCs in neurones of the guinea-pig dorsal lateral geniculate nucleus. The Journal of physiology. 496 ( Pt 3) [PubMed]
Pinault D, Bourassa J, Deschênes M. (1995). The axonal arborization of single thalamic reticular neurons in the somatosensory thalamus of the rat. The European journal of neuroscience. 7 [PubMed]
Sejnowski TJ, Destexhe A. (2001). Thalamocortical Assemblies-How Ion Channels, Single Neurons and large-Scale Networks Organize Sleep.
Sejnowski TJ, Destexhe A, Mainen Z. (1994). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding Neural Comput. 6
Sherman SM. (2001). A wake-up call from the thalamus. Nature neuroscience. 4 [PubMed]
Steriade M. (2001). To burst, or rather, not to burst. Nature neuroscience. 4 [PubMed]
Steriade M, Jones EG, Llinas RR. (1990). Thalamic Oscillations And Signalling.
Ulrich D, Huguenard JR. (1997). Nucleus-specific chloride homeostasis in rat thalamus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Weyand TG, Boudreaux M, Guido W. (2001). Burst and tonic response modes in thalamic neurons during sleep and wakefulness. Journal of neurophysiology. 85 [PubMed]
Williams SR, Stuart GJ. (2000). Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]
Babadi B. (2005). Bursting as an effective relay mode in a minimal thalamic model. Journal of computational neuroscience. 18 [PubMed]
Carnevale NT, Morse TM. (1996). Research reports that have used NEURON Web published citations at the NEURON website.
Destexhe A, Sejnowski TJ. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological reviews. 83 [PubMed]
Hadipour-Niktarash A. (2006). A computational model of how an interaction between the thalamocortical and thalamic reticular neurons transforms the low-frequency oscillations of the globus pallidus. Journal of computational neuroscience. 20 [PubMed]
Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature neuroscience. 8 [PubMed]
Yousif NAB, Denham M. (2004). Action potential backpropagation in a model thalamocortical relay cell Neurocomputing. 58-60