Brunel N, Wang XJ. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of computational neuroscience. 11 [PubMed]
Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT. (2015). Desynchronization of fast-spiking interneurons reduces ß-band oscillations and imbalance in firing in the dopamine-depleted striatum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]
Damodaran S, Evans RC, Blackwell KT. (2014). Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. Journal of neurophysiology. 111 [PubMed]
Frank MJ. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of cognitive neuroscience. 17 [PubMed]
Gruber AJ, Dayan P, Gutkin BS, Solla SA. (2006). Dopamine modulation in the basal ganglia locks the gate to working memory. Journal of computational neuroscience. 20 [PubMed]
Gruber AJ, Solla SA, Surmeier DJ, Houk JC. (2003). Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. Journal of neurophysiology. 90 [PubMed]
Humphries MD, Stewart RD, Gurney KN. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Kotaleski JH, Plenz D, Blackwell KT. (2006). Using potassium currents to solve signal-to-noise problems in inhibitory feedforward networks of the striatum. Journal of neurophysiology. 95 [PubMed]
Kumaravelu K, Brocker DT, Grill WM. (2016). A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. Journal of computational neuroscience. 40 [PubMed]
Nakano T, Yoshimoto J, Doya K. (2013). A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Frontiers in computational neuroscience. 7 [PubMed]
O'Reilly RC, Frank MJ. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural computation. 18 [PubMed]
O`Reilly RC, Frank MJ. (2005). Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia Neural Comput. 18
Steephen JE, Manchanda R. (2009). Differences in biophysical properties of nucleus accumbens medium spiny neurons emerging from inactivation of inward rectifying potassium currents. Journal of computational neuroscience. 27 [PubMed]
Ursino M, Baston C. (2018). Aberrant learning in Parkinson's disease: A neurocomputational study on bradykinesia. The European journal of neuroscience. 47 [PubMed]
Wolf JA et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Wörgötter F, Porr B. (2005). Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural computation. 17 [PubMed]