Cerminara NL, Rawson JA. (2004). Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
Colin F, Manil J, Desclin JC. (1980). The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers. Brain research. 187 [PubMed]
Crunelli V, Tóth TI, Cope DW, Blethyn K, Hughes SW. (2005). The 'window' T-type calcium current in brain dynamics of different behavioural states. The Journal of physiology. 562 [PubMed]
De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. Journal of neurophysiology. 71 [PubMed]
De Schutter E, Bower JM. (1994). Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proceedings of the National Academy of Sciences of the United States of America. 91 [PubMed]
Doiron B, Longtin A, Turner RW, Maler L. (2001). Model of gamma frequency burst discharge generated by conditional backpropagation. Journal of neurophysiology. 86 [PubMed]
Ebner TJ, Bloedel JR. (1981). Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. Journal of neurophysiology. 45 [PubMed]
Ebner TJ, Bloedel JR. (1984). Climbing fiber action on the responsiveness of Purkinje cells to parallel fiber inputs. Brain research. 309 [PubMed]
Ermentrout GB. (2002). Simulating, Analyzing, and Animating Dynamical System: A Guide to XPPAUT for Researchers and Students Society for Industrial and Applied Mathematics (SIAM).
Fernandez FR, Mehaffey WH, Turner RW. (2005). Dendritic Na+ current inactivation can increase cell excitability by delaying a somatic depolarizing afterpotential. Journal of neurophysiology. 94 [PubMed]
Genet S, Delord B. (2002). A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in purkinje cell dendrites. Journal of neurophysiology. 88 [PubMed]
Hounsgaard J, Midtgaard J. (1988). Intrinsic determinants of firing pattern in Purkinje cells of the turtle cerebellum in vitro. The Journal of physiology. 402 [PubMed]
Hounsgaard J, Midtgaard J. (1989). Synaptic control of excitability in turtle cerebellar Purkinje cells. The Journal of physiology. 409 [PubMed]
Hsu YH, Huang HY, Tsaur ML. (2003). Contrasting expression of Kv4.3, an A-type K+ channel, in migrating Purkinje cells and other post-migratory cerebellar neurons. The European journal of neuroscience. 18 [PubMed]
Izhikevich EM. (2000). Neural excitability, spiking and bursting Int J Bifurcat Chaos Appl Sci Eng. 10
Izhikevich EM. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.
Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in neurosciences. 26 [PubMed]
Jaeger D, De Schutter E, Bower JM. (1997). The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Khaliq ZM, Gouwens NW, Raman IM. (2003). The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Li WC, Soffe SR, Wolf E, Roberts A. (2006). Persistent responses to brief stimuli: feedback excitation among brainstem neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Llinás R, Sugimori M. (1980). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. The Journal of physiology. 305 [PubMed]
Llinás R, Sugimori M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. The Journal of physiology. 305 [PubMed]
Loewenstein Y et al. (2005). Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nature neuroscience. 8 [PubMed]
Martina M, Metz AE, Bean BP. (2007). Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin. Journal of neurophysiology. 97 [PubMed]
Martina M, Yao GL, Bean BP. (2003). Properties and functional role of voltage-dependent potassium channels in dendrites of rat cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Mattson MP et al. (2000). Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends in neurosciences. 23 [PubMed]
McKay BE et al. (2007). Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of purkinje cell output. Journal of neurophysiology. 97 [PubMed]
McKay BE, Molineux ML, Mehaffey WH, Turner RW. (2005). Kv1 K+ channels control Purkinje cell output to facilitate postsynaptic rebound discharge in deep cerebellar neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
McKay BE, Turner RW. (2004). Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells. The European journal of neuroscience. 20 [PubMed]
McKay BE, Turner RW. (2005). Physiological and morphological development of the rat cerebellar Purkinje cell. The Journal of physiology. 567 [PubMed]
Montarolo PG, Palestini M, Strata P. (1982). The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. The Journal of physiology. 332 [PubMed]
Pinsky PF, Rinzel J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of computational neuroscience. 1 [PubMed]
Raman IM, Bean BP. (1999). Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]
Raman IM, Bean BP. (1999). Properties of sodium currents and action potential firing in isolated cerebellar Purkinje neurons. Annals of the New York Academy of Sciences. 868 [PubMed]
Raman IM, Bean BP. (2001). Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophysical journal. 80 [PubMed]
Rapp M, Segev I, Yarom Y. (1994). Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells. The Journal of physiology. 474 [PubMed]
Rinzel J. (1985). Excitation dynamics: insights from simplified membrane models. Federation proceedings. 44 [PubMed]
Rinzel J, Ermentrout B. (1998). Analysis of neural excitability and oscillations. Methods In Neuronal Modeling 2nd Edition.
Roth A, Häusser M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. The Journal of physiology. 535 [PubMed]
Sacco T, Tempia F. (2002). A-type potassium currents active at subthreshold potentials in mouse cerebellar Purkinje cells. The Journal of physiology. 543 [PubMed]
Santamaria F, Bower JM. (2005). Background synaptic activity modulates the response of a modeled purkinje cell to paired afferent input. Journal of neurophysiology. 93 [PubMed]
Santamaria F, Jaeger D, De Schutter E, Bower JM. (2002). Modulatory effects of parallel fiber and molecular layer interneuron synaptic activity on purkinje cell responses to ascending segment input: a modeling study. Journal of computational neuroscience. 13 [PubMed]
Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C. (2002). The making of a complex spike: ionic composition and plasticity. Annals of the New York Academy of Sciences. 978 [PubMed]
Schonewille M et al. (2006). Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nature neuroscience. 9 [PubMed]
Seung HS, Lee DD, Reis BY, Tank DW. (2000). Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron. 26 [PubMed]
Stafstrom CE, Schwindt PC, Crill WE. (1982). Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro. Brain research. 236 [PubMed]
Strogatz SH. (1994). Nonlinear Dynamics And Chaos With Applications To Physics, Biology, Chemistry, And Engineering.
Stuart G, Häusser M. (1994). Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron. 13 [PubMed]
Swensen AM, Bean BP. (2003). Ionic mechanisms of burst firing in dissociated Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Vetter P, Roth A, Häusser M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of neurophysiology. 85 [PubMed]
Wagner N et al. (1996). Critical role for beta7 integrins in formation of the gut-associated lymphoid tissue. Nature. 382 [PubMed]
Williams SR, Christensen SR, Stuart GJ, Häusser M. (2002). Membrane potential bistability is controlled by the hyperpolarization-activated current I(H) in rat cerebellar Purkinje neurons in vitro. The Journal of physiology. 539 [PubMed]
Williams SR, Tóth TI, Turner JP, Hughes SW, Crunelli V. (1997). The 'window' component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. The Journal of physiology. 505 ( Pt 3) [PubMed]
Womack M, Khodakhah K. (2002). Active contribution of dendrites to the tonic and trimodal patterns of activity in cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Couto J, Linaro D, De Schutter E, Giugliano M. (2015). On the firing rate dependency of the phase response curve of rat Purkinje neurons in vitro. PLoS computational biology. 11 [PubMed]
Genet S, Sabarly L, Guigon E, Berry H, Delord B. (2010). Dendritic signals command firing dynamics in a mathematical model of cerebellar Purkinje cells. Biophysical journal. 99 [PubMed]
Le Franc Y, Le Masson G. (2010). Multiple firing patterns in deep dorsal horn neurons of the spinal cord: computational analysis of mechanisms and functional implications. Journal of neurophysiology. 104 [PubMed]
Somjen GG, Kager H, Wadman WJ. (2008). Computer simulations of neuron-glia interactions mediated by ion flux. Journal of computational neuroscience. 25 [PubMed]
Sudhakar SK, Torben-Nielsen B, De Schutter E. (2015). Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses. PLoS computational biology. 11 [PubMed]
Zang Y, Dieudonné S, De Schutter E. (2018). Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells Cell reports. 24 [PubMed]