Hines ML, Carnevale NT. (2004). Discrete event simulation in the NEURON environment. Neurocomputing. 58-60

See more from authors: Hines ML · Carnevale NT

References and models cited by this paper

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]

Hines ML, Carnevale NT. (2000). Expanding NEURON's repertoire of mechanisms with NMODL. Neural computation. 12 [PubMed]

Lytton WW. (1996). Optimizing synaptic conductance calculation for network simulations. Neural computation. 8 [PubMed]

Sejnowski TJ, Destexhe A, Mainen Z. (1994). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding Neural Comput. 6

Varela JA et al. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

References and models that cite this paper

Davison AP, Frégnac Y. (2006). Learning cross-modal spatial transformations through spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Lytton WW, Neymotin SA, Hines ML. (2008). The virtual slice setup. Journal of neuroscience methods. 171 [PubMed]

Lytton WW et al. (2016). Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural computation. 28 [PubMed]

Martínez-Cañada P et al. (2018). Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells. PLoS computational biology. 14 [PubMed]

Migliore M, Cannia C, Lytton WW, Markram H, Hines ML. (2006). Parallel network simulations with NEURON. Journal of computational neuroscience. 21 [PubMed]

Rudolph M, Destexhe A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural computation. 18 [PubMed]

van Elburg RA, van Ooyen A. (2009). Generalization of the event-based Carnevale-Hines integration scheme for integrate-and-fire models. Neural computation. 21 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.