Delgado JY, Gómez-González JF, Desai NS. (2010). Pyramidal neuron conductance state gates spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

See more from authors: Delgado JY · Gómez-González JF · Desai NS

References and models cited by this paper

Abbott LF, Nelson SB. (2000). Synaptic plasticity: taming the beast. Nature neuroscience. 3 Suppl [PubMed]

Abraham WC. (2008). Metaplasticity: tuning synapses and networks for plasticity. Nature reviews. Neuroscience. 9 [PubMed]

Anderson JS, Lampl I, Gillespie DC, Ferster D. (2000). The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science (New York, N.Y.). 290 [PubMed]

Araya R, Jiang J, Eisenthal KB, Yuste R. (2006). The spine neck filters membrane potentials. Proceedings of the National Academy of Sciences of the United States of America. 103 [PubMed]

Arieli A, Sterkin A, Grinvald A, Aertsen A. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science (New York, N.Y.). 273 [PubMed]

Badoual M et al. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. International journal of neural systems. 16 [PubMed]

Bender VA, Bender KJ, Brasier DJ, Feldman DE. (2006). Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Bernander O, Douglas RJ, Martin KA, Koch C. (1991). Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proceedings of the National Academy of Sciences of the United States of America. 88 [PubMed]

Bienenstock EL, Cooper LN, Munro PW. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2 [PubMed]

Billings G, van Rossum MC. (2009). Memory retention and spike-timing-dependent plasticity. Journal of neurophysiology. 101 [PubMed]

Borg-Graham LJ, Monier C, Frégnac Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature. 393 [PubMed]

Burkitt AN, Meffin H, Grayden DB. (2004). Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural computation. 16 [PubMed]

Caporale N, Dan Y. (2008). Spike timing-dependent plasticity: a Hebbian learning rule. Annual review of neuroscience. 31 [PubMed]

Castro-Alamancos MA. (2004). Absence of rapid sensory adaptation in neocortex during information processing states. Neuron. 41 [PubMed]

Chance FS, Abbott LF, Reyes AD. (2002). Gain modulation from background synaptic input. Neuron. 35 [PubMed]

Chevaleyre V, Takahashi KA, Castillo PE. (2006). Endocannabinoid-mediated synaptic plasticity in the CNS. Annual review of neuroscience. 29 [PubMed]

Clopath C, Büsing L, Vasilaki E, Gerstner W. (2010). Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature neuroscience. 13 [PubMed]

Desai NS, Walcott EC. (2006). Synaptic bombardment modulates muscarinic effects in forelimb motor cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Destexhe A, Paré D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of neurophysiology. 81 [PubMed]

Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience. 107 [PubMed]

Destexhe A, Rudolph M, Paré D. (2003). The high-conductance state of neocortical neurons in vivo. Nature reviews. Neuroscience. 4 [PubMed]

Duguid I, Sjöström PJ. (2006). Novel presynaptic mechanisms for coincidence detection in synaptic plasticity. Current opinion in neurobiology. 16 [PubMed]

Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ. (2003). Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience. 122 [PubMed]

Froemke RC, Dan Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature. 416 [PubMed]

Froemke RC, Tsay IA, Raad M, Long JD, Dan Y. (2006). Contribution of individual spikes in burst-induced long-term synaptic modification. Journal of neurophysiology. 95 [PubMed]

Gütig R, Aharonov R, Rotter S, Sompolinsky H. (2003). Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Haider B, Duque A, Hasenstaub AR, McCormick DA. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Haider B, McCormick DA. (2009). Rapid neocortical dynamics: cellular and network mechanisms. Neuron. 62 [PubMed]

Harsch A, Robinson HP. (2000). Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Higley MJ, Contreras D. (2006). Balanced excitation and inhibition determine spike timing during frequency adaptation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]

Izhikevich EM, Desai NS. (2003). Relating STDP to BCM. Neural computation. 15 [PubMed]

Jacob V, Brasier DJ, Erchova I, Feldman D, Shulz DE. (2007). Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Larkum ME, Waters J, Sakmann B, Helmchen F. (2007). Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Letzkus JJ, Kampa BM, Stuart GJ. (2006). Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Madison DV, Nicoll RA. (1986). Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. The Journal of physiology. 372 [PubMed]

Meliza CD, Dan Y. (2006). Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron. 49 [PubMed]

Meredith RM, Holmgren CD, Weidum M, Burnashev N, Mansvelder HD. (2007). Increased threshold for spike-timing-dependent plasticity is caused by unreliable calcium signaling in mice lacking fragile X gene FMR1. Neuron. 54 [PubMed]

Morrison A, Aertsen A, Diesmann M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural computation. 19 [PubMed]

Morrison A, Diesmann M, Gerstner W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological cybernetics. 98 [PubMed]

Nevian T, Sakmann B. (2006). Spine Ca2+ signaling in spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. Journal of neurophysiology. 79 [PubMed]

Rodríguez-Moreno A, Banerjee A, Paulsen O. (2010). Presynaptic NMDA Receptors and Spike Timing-Dependent Depression at Cortical Synapses. Frontiers in synaptic neuroscience. 2 [PubMed]

Rudolph M, Destexhe A. (2003). A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Rudolph M, Pelletier JG, Paré D, Destexhe A. (2005). Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo. Journal of neurophysiology. 94 [PubMed]

Rudolph M, Pospischil M, Timofeev I, Destexhe A. (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Sabatini BL, Oertner TG, Svoboda K. (2002). The life cycle of Ca(2+) ions in dendritic spines. Neuron. 33 [PubMed]

Scanziani M, Häusser M. (2009). Electrophysiology in the age of light. Nature. 461 [PubMed]

Seol GH et al. (2007). Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron. 55 [PubMed]

Sjöström PJ, Rancz EA, Roth A, Häusser M. (2008). Dendritic excitability and synaptic plasticity. Physiological reviews. 88 [PubMed]

Sjöström PJ, Turrigiano GG, Nelson SB. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 32 [PubMed]

Sjöström PJ, Turrigiano GG, Nelson SB. (2003). Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron. 39 [PubMed]

Sjöström PJ, Turrigiano GG, Nelson SB. (2004). Endocannabinoid-dependent neocortical layer-5 LTD in the absence of postsynaptic spiking. Journal of neurophysiology. 92 [PubMed]

Song S, Miller KD, Abbott LF. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature neuroscience. 3 [PubMed]

Steriade M, Timofeev I, Grenier F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of neurophysiology. 85 [PubMed]

Svoboda K, Helmchen F, Denk W, Tank DW. (1999). Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nature neuroscience. 2 [PubMed]

Traub RD, Buhl EH, Gloveli T, Whittington MA. (2003). Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. Journal of neurophysiology. 89 [PubMed]

Turrigiano GG. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell. 135 [PubMed]

Waters J, Larkum M, Sakmann B, Helmchen F. (2003). Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Watt AJ, Desai NS. (2010). Homeostatic Plasticity and STDP: Keeping a Neuron's Cool in a Fluctuating World. Frontiers in synaptic neuroscience. 2 [PubMed]

Watt AJ, van Rossum MC, MacLeod KM, Nelson SB, Turrigiano GG. (2000). Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron. 26 [PubMed]

Wehr M, Zador AM. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature. 426 [PubMed]

Williams SR. (2004). Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nature neuroscience. 7 [PubMed]

Zhang JC, Lau PM, Bi GQ. (2009). Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America. 106 [PubMed]

Zou Q, Destexhe A. (2007). Kinetic models of spike-timing dependent plasticity and their functional consequences in detecting correlations. Biological cybernetics. 97 [PubMed]

van Rossum MC, Bi GQ, Turrigiano GG. (2000). Stable Hebbian learning from spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.