Akemann W, Knöpfel T. (2006). Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Arsiero M, Lüscher HR, Lundstrom BN, Giugliano M. (2007). The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Brennan EKW, Sudhakar SK, Jedrasiak-Cape I, John TT, Ahmed OJ. (2020). Hyperexcitable Neurons Enable Precise and Persistent Information Encoding in the Superficial Retrosplenial Cortex. Cell reports. 30 [PubMed]
Buckingham SD, Spencer AN. (2002). Role of high-voltage activated potassium currents in high-frequency neuronal firing: evidence from a basal metazoan. Journal of neurophysiology. 88 [PubMed]
Damodaran S, Evans RC, Blackwell KT. (2014). Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. Journal of neurophysiology. 111 [PubMed]
Fernandez FR, Mehaffey WH, Molineux ML, Turner RW. (2005). High-threshold K+ current increases gain by offsetting a frequency-dependent increase in low-threshold K+ current. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Geisler C, Brunel N, Wang XJ. (2005). Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. Journal of neurophysiology. 94 [PubMed]
Golomb D et al. (2007). Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS computational biology. 3 [PubMed]
Gu N, Vervaeke K, Storm JF. (2007). BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. The Journal of physiology. 580 [PubMed]
Hemond P et al. (2008). Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus. 18 [PubMed]
Huang CW, Tsai JJ, Huang CC, Wu SN. (2009). Experimental and simulation studies on the mechanisms of levetiracetam-mediated inhibition of delayed-rectifier potassium current (KV3.1): contribution to the firing of action potentials. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 60 [PubMed]
Jaffe DB, Brenner R. (2018). A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. Journal of neurophysiology. 119 [PubMed]
Jolivet R, Gerstner W. (2004). Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. Journal of physiology, Paris. 98 [PubMed]
Jolivet R, Lewis TJ, Gerstner W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of neurophysiology. 92 [PubMed]
Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]
Kitano K, Fukai T. (2007). Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies. Journal of computational neuroscience. 23 [PubMed]
Kobayashi R et al. (2019). Reconstructing neuronal circuitry from parallel spike trains. Nature communications. 10 [PubMed]
Kotaleski JH, Plenz D, Blackwell KT. (2006). Using potassium currents to solve signal-to-noise problems in inhibitory feedforward networks of the striatum. Journal of neurophysiology. 95 [PubMed]
Lien CC, Martina M, Schultz JH, Ehmke H, Jonas P. (2002). Gating, modulation and subunit composition of voltage-gated K(+) channels in dendritic inhibitory interneurones of rat hippocampus. The Journal of physiology. 538 [PubMed]
Pfeuty B, Mato G, Golomb D, Hansel D. (2003). Electrical synapses and synchrony: the role of intrinsic currents. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Prescott SA, De Koninck Y, Sejnowski TJ. (2008). Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS computational biology. 4 [PubMed]
Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ. (2008). Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. Journal of neurophysiology. 100 [PubMed]
Spratt PWE et al. (2021). Paradoxical hyperexcitability from NaV1.2 sodium channel loss in neocortical pyramidal cells Cell reports. 36 [PubMed]
Tikidji-Hamburyan RA, Canavier CC. (2020). Shunting Inhibition Improves Synchronization in Heterogeneous Inhibitory Interneuronal Networks with Type 1 Excitability Whereas Hyperpolarizing Inhibition is Better for Type 2 Excitability. eNeuro. 7 [PubMed]
Tikidji-Hamburyan RA, Martínez JJ, White JA, Canavier CC. (2015). Resonant Interneurons Can Increase Robustness of Gamma Oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]
Upchurch CM, Knowlton CJ, Chamberland S, Canavier CC. (2024). Persistent Interruption in Parvalbumin-Positive Inhibitory Interneurons: Biophysical and Mathematical Mechanisms. eNeuro. 11 [PubMed]
Vida I, Bartos M, Jonas P. (2006). Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron. 49 [PubMed]