Jahnsen H, Llinás R. (1984). Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. The Journal of physiology. 349 [PubMed]

See more from authors: Jahnsen H · Llinás R

References and models cited by this paper
References and models that cite this paper

Angstadt JD, Friesen WO. (1991). Synchronized oscillatory activity in leech neurons induced by calcium channel blockers. Journal of neurophysiology. 66 [PubMed]

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. (1998). Computational models of thalamocortical augmenting responses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Bhattacharya BS, Coyle D, Maguire LP. (2011). A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer's disease. Neural networks : the official journal of the International Neural Network Society. 24 [PubMed]

Bichler EK, Cavarretta F, Jaeger D. (2021). Changes in Excitability Properties of Ventromedial Motor Thalamic Neurons in 6-OHDA Lesioned Mice. eNeuro. 8 [PubMed]

Chemin J et al. (2002). Specific contribution of human T-type calcium channel isotypes (alpha(1G), alpha(1H) and alpha(1I)) to neuronal excitability. The Journal of physiology. 540 [PubMed]

Connelly WM, Crunelli V, Errington AC. (2015). The Global Spike: Conserved Dendritic Properties Enable Unique Ca2+ Spike Generation in Low-Threshold Spiking Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Destexhe A, Babloyantz A, Sejnowski TJ. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical journal. 65 [PubMed]

Destexhe A, Contreras D, Steriade M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of neurophysiology. 79 [PubMed]

Destexhe A, Huguenard JR. (2000). Nonlinear thermodynamic models of voltage-dependent currents. Journal of computational neuroscience. 9 [PubMed]

Destexhe A, McCormick DA, Sejnowski TJ. (1993). A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophysical journal. 65 [PubMed]

Destexhe A, Neubig M. (1999). Low threshold calcium T-current IV curve geometry is alterable through the distribution of T-channels in thalamic relay neurons Neurocomputing. 26-27

Destexhe A, Neubig M. (2000). The dendritic organization of thalamocortical relay neurons and the dual functions of their inhibitory synaptic input Thalamus Regul Syst. 1

Destexhe A, Neubig M, Ulrich D, Huguenard J. (1998). Dendritic low-threshold calcium currents in thalamic relay cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Destexhe A, Sejnowski TJ. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological reviews. 83 [PubMed]

Deyo SN, Lytton WW. (1997). Inhibition can disrupt hypersynchrony in model neuronal networks. Progress in neuro-psychopharmacology & biological psychiatry. 21 [PubMed]

Gabbiani F, Krapp HG. (2006). Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. Journal of neurophysiology. 96 [PubMed]

Jaffe DB, Brenner R. (2018). A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. Journal of neurophysiology. 119 [PubMed]

Li G, Henriquez CS, Fröhlich F. (2017). Unified Thalamic Model Generates Multiple Distinct Oscillations with State-dependent Entrainment by Stimulation PLOS Computational Biology. 13(10)

Lytton WW, Contreras D, Destexhe A, Steriade M. (1997). Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. Journal of neurophysiology. 77 [PubMed]

Lytton WW, Destexhe A, Sejnowski TJ. (1996). Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience. 70 [PubMed]

Lytton WW, Sejnowski TJ. (1992). Computer model of ethosuximide's effect on a thalamic neuron. Annals of neurology. 32 [PubMed]

Lytton WW, Wathey JC. (1992). Realistic single-neuron modeling Seminars In Neuroscience. 4

Masurkar AV, Chen WR. (2011). Calcium currents of olfactory bulb juxtaglomerular cells: profile and multiple conductance plateau potential simulation. Neuroscience. 192 [PubMed]

Masurkar AV, Chen WR. (2011). Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience. 192 [PubMed]

Montemurro MA et al. (2007). Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. Journal of neurophysiology. 98 [PubMed]

Moore LE, Buchanan JT. (1993). The effects of neurotransmitters on the integrative properties of spinal neurons in the lamprey. The Journal of experimental biology. 175 [PubMed]

Mukherjee P, Kaplan E. (1998). The maintained discharge of neurons in the cat lateral geniculate nucleus: spectral analysis and computational modeling. Visual neuroscience. 15 [PubMed]

Perreault MC, Raastad M. (2006). Contribution of morphology and membrane resistance to integration of fast synaptic signals in two thalamic cell types. The Journal of physiology. 577 [PubMed]

Quadroni R, Knöpfel T. (1994). Compartmental models of type A and type B guinea pig medial vestibular neurons. Journal of neurophysiology. 72 [PubMed]

Reuveni I, Friedman A, Amitai Y, Gutnick MJ. (1993). Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Sekirnjak C, du Lac S. (2002). Intrinsic firing dynamics of vestibular nucleus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Sikdar SK, Majumdar S. (). Periodicity in Na+ channel properties alters excitability of a model neuron Biochem Biophys Res Commun.. (in press)

Smith GD, Cox CL, Sherman SM, Rinzel J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of neurophysiology. 83 [PubMed]

Sánchez E, Barro S, Mariño J, Canedo A. (2003). A computational model of cuneothalamic projection neurons. Network (Bristol, England). 14 [PubMed]

Thomas E, Lytton WW. (1998). Computer model of antiepileptic effects mediated by alterations in GABA(A)-mediated inhibition. Neuroreport. 9 [PubMed]

Tiesinga PH, José JV. (2000). Synchronous clusters in a noisy inhibitory neural network. Journal of computational neuroscience. 9 [PubMed]

Wang XJ. (1994). Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. Neuroscience. 59 [PubMed]

Wang XJ, Rinzel J, Rogawski MA. (1991). A model of the T-type calcium current and the low-threshold spike in thalamic neurons. Journal of neurophysiology. 66 [PubMed]

Zeldenrust F, Chameau P, Wadman WJ. (2018). Spike and burst coding in thalamocortical relay cells. PLoS computational biology. 14 [PubMed]

Zeldenrust F, Chameau PJ, Wadman WJ. (2013). Reliability of spike and burst firing in thalamocortical relay cells. Journal of computational neuroscience. 35 [PubMed]

Zhu JJ, Uhlrich DJ, Lytton WW. (1999). Burst firing in identified rat geniculate interneurons. Neuroscience. 91 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.