Hoffman DA, Johnston D. (1998). Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

See more from authors: Hoffman DA · Johnston D

References and models cited by this paper
References and models that cite this paper

Acker CD, White JA. (2007). Roles of IA and morphology in action potential propagation in CA1 pyramidal cell dendrites. Journal of computational neuroscience. 23 [PubMed]

Ascoli GA, Gasparini S, Medinilla V, Migliore M. (2010). Local control of postinhibitory rebound spiking in CA1 pyramidal neuron dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Bianchi D et al. (2012). On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. Journal of computational neuroscience. 33 [PubMed]

Briant LJ, Stalbovskiy AO, Nolan MF, Champneys AR, Pickering AE. (2014). Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats. Journal of neurophysiology. 112 [PubMed]

Combe CL, Canavier CC, Gasparini S. (2018). Intrinsic Mechanisms of Frequency Selectivity in the Proximal Dendrites of CA1 Pyramidal Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 38 [PubMed]

Ellis LD, Krahe R, Bourque CW, Dunn RJ, Chacron MJ. (2007). Muscarinic receptors control frequency tuning through the downregulation of an A-type potassium current. Journal of neurophysiology. 98 [PubMed]

Fernández de Sevilla D, Fuenzalida M, Porto Pazos AB, Buño W. (2007). Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons. Journal of neurophysiology. 97 [PubMed]

Gasparini S, Migliore M, Magee JC. (2004). On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Golding NL, Kath WL, Spruston N. (2001). Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. Journal of neurophysiology. 86 [PubMed]

Hendrickson EB, Edgerton JR, Jaeger D. (2011). The use of automated parameter searches to improve ion channel kinetics for neural modeling. Journal of computational neuroscience. 31 [PubMed]

Kanold PO, Manis PB. (2001). A physiologically based model of discharge pattern regulation by transient K+ currents in cochlear nucleus pyramidal cells. Journal of neurophysiology. 85 [PubMed]

Kim B, Hawes SL, Gillani F, Wallace LJ, Blackwell KT. (2013). Signaling pathways involved in striatal synaptic plasticity are sensitive to temporal pattern and exhibit spatial specificity. PLoS computational biology. 9 [PubMed]

Lindroos R et al. (2018). Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Frontiers in neural circuits. 12 [PubMed]

Menschik ED, Finkel LH. (2000). Cholinergic neuromodulation of an anatomically reconstructed hippocampal CA3 pyramidal cell Neurocomputing.

Migliore M, Hoffman DA, Magee JC, Johnston D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of computational neuroscience. 7 [PubMed]

Mohapatra DP et al. (2009). Regulation of intrinsic excitability in hippocampal neurons by activity-dependent modulation of the KV2.1 potassium channel. Channels (Austin, Tex.). 3 [PubMed]

Neville KR, Lytton WW. (1999). Potentiation of Ca2+ influx through NMDA channels by action potentials: a computer model. Neuroreport. 10 [PubMed]

Rhodes PA, Llinás RR. (2001). Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex. The Journal of physiology. 536 [PubMed]

Saraga F, Wu CP, Zhang L, Skinner FK. (2003). Active dendrites and spike propagation in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons. The Journal of physiology. 552 [PubMed]

Segev I, London M. (2000). Untangling dendrites with quantitative models. Science (New York, N.Y.). 290 [PubMed]

Takagi H, Sato R, Mori M, Ito E, Suzuki H. (1998). Roles of A- and D-type K channels in EPSP integration at a model dendrite. Neuroscience letters. 254 [PubMed]

Takagi H et al. (2000). Time-sharing contributions of A- and D-type K+ channels to the integration of high-frequency sequential excitatory post synaptic potentials at a model dendrite in rats. Neuroscience letters. 289 [PubMed]

Upchurch CM et al. (2022). Long-Term Inactivation of Sodium Channels as a Mechanism of Adaptation in CA1 Pyramidal Cells The Journal of neuroscience : the official journal of the Society for Neuroscience. 42 [PubMed]

Urakubo H, Aihara T, Kuroda S, Watanabe M, Kondo S. (2004). Spatial localization of synapses required for supralinear summation of action potentials and EPSPs. Journal of computational neuroscience. 16 [PubMed]

Watanabe S, Hoffman DA, Migliore M, Johnston D. (2002). Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]

Wolf JA et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.