Goodman DF, Brette R. (2009). The brian simulator. Frontiers in neuroscience. 3 [PubMed]

See more from authors: Goodman DF · Brette R

References and models cited by this paper
References and models that cite this paper

Beim Graben P, Rodrigues S. (2012). A biophysical observation model for field potentials of networks of leaky integrate-and-fire neurons. Frontiers in computational neuroscience. 6 [PubMed]

Bernard C, Jirsa VK, Woodman MM, Melozzi F. (2017). The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics eNeuro.

Brette R. (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS computational biology. 9 [PubMed]

Brette R, Goodman DF. (2011). Vectorized algorithms for spiking neural network simulation. Neural computation. 23 [PubMed]

Cattani A, Solinas S, Canuto C. (2016). A Hybrid Model for the Computationally-Efficient Simulation of the Cerebellar Granular Layer. Frontiers in computational neuroscience. 10 [PubMed]

Chavlis S, Petrantonakis PC, Poirazi P. (2017). Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus. 27 [PubMed]

Danielson NB et al. (2017). In Vivo Imaging of Dentate Gyrus Mossy Cells in Behaving Mice. Neuron. 93 [PubMed]

David F, Courtiol E, Buonviso N, Fourcaud-Trocmé N. (2015). Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro. 2 [PubMed]

Evans BD, Jarvis S, Schultz SR, Nikolic K. (2016). PyRhO: A Multiscale Optogenetics Simulation Platform. Frontiers in neuroinformatics. 10 [PubMed]

Fardet T, Levina A. (2020). Simple Models Including Energy and Spike Constraints Reproduce Complex Activity Patterns and Metabolic Disruptions PLoS computational biology. 16 [PubMed]

Ferguson KA et al. (2015). Network models provide insights into how oriens-lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations. Frontiers in systems neuroscience. 9 [PubMed]

Ferguson KA, Huh CY, Amilhon B, Williams S, Skinner FK. (2013). Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Frontiers in computational neuroscience. 7 [PubMed]

Ferguson KA, Njap F, Nicola W, Skinner FK, Campbell SA. (2015). Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus. Journal of computational neuroscience. 39 [PubMed]

Fountas Z, Shanahan M. (2017). The role of cortical oscillations in a spiking neural network model of the basal ganglia. PloS one. 12 [PubMed]

Friedrich P, Vella M, Gulyás AI, Freund TF, Káli S. (2014). A flexible, interactive software tool for fitting the parameters of neuronal models. Frontiers in neuroinformatics. 8 [PubMed]

Goodman DF, Brette R. (2010). Spike-timing-based computation in sound localization. PLoS computational biology. 6 [PubMed]

Goodman DFM, Brette R. (2013). Brian simulator Scholarpedia. 8(1)

Khalil R, Moftah MZ, Moustafa AA. (2017). The effects of dynamical synapses on firing rate activity: a spiking neural network model. The European journal of neuroscience. 46 [PubMed]

Kim J, Leahy W, Shlizerman E. (2019). Neural Interactome: Interactive Simulation of a Neuronal System. Frontiers in computational neuroscience. 13 [PubMed]

Kremer Y, Léger JF, Goodman D, Brette R, Bourdieu L. (2011). Late emergence of the vibrissa direction selectivity map in the rat barrel cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Lytton WW et al. (2016). Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural computation. 28 [PubMed]

Magalhães BRC, Sterling T, Hines M, Schürmann F. (2019). Asynchronous Branch-Parallel Simulation of Detailed Neuron Models. Frontiers in neuroinformatics. 13 [PubMed]

Martínez-Cañada P, Morillas C, Pino B, Ros E, Pelayo F. (2016). A Computational Framework for Realistic Retina Modeling. International journal of neural systems. 26 [PubMed]

Muller L, Brette R, Gutkin B. (2011). Spike-timing dependent plasticity and feed-forward input oscillations produce precise and invariant spike phase-locking. Frontiers in computational neuroscience. 5 [PubMed]

Pelot NA et al. (2021). Excitation Properties of Computational Models of Unmyelinated Peripheral Axons Journal of neurophysiology. 125 [PubMed]

Ramirez-Mahaluf JP, Roxin A, Mayberg HS, Compte A. (2017). A Computational Model of Major Depression: the Role of Glutamate Dysfunction on Cingulo-Frontal Network Dynamics. Cerebral cortex (New York, N.Y. : 1991). 27 [PubMed]

Richert M, Nageswaran JM, Dutt N, Krichmar JL. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers in neuroinformatics. 5 [PubMed]

Richmond P, Buesing L, Giugliano M, Vasilaki E. (2011). Democratic population decisions result in robust policy-gradient learning: a parametric study with GPU simulations. PloS one. 6 [PubMed]

Rossant C, Leijon S, Magnusson AK, Brette R. (2011). Sensitivity of noisy neurons to coincident inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Rothman JS, Silver RA. (2018). NeuroMatic: An Integrated Open-Source Software Toolkit for Acquisition, Analysis and Simulation of Electrophysiological Data. Frontiers in neuroinformatics. 12 [PubMed]

Sherfey JS et al. (2018). DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation. Frontiers in neuroinformatics. 12 [PubMed]

Shimoura RO et al. (2018). [Re] The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model The ReScience Journal. 4(1)

Tan AY, Andoni S, Priebe NJ. (2013). A spontaneous state of weakly correlated synaptic excitation and inhibition in visual cortex. Neuroscience. 247 [PubMed]

Tikidji-Hamburyan RA, El-Ghazawi TA, Narayana V, Bozkus Z. (2017). Software for Brain Network Simulations: A Comparative Study Front. Neuroinform..

Van Pottelbergh T, Drion G, Sepulchre R. (2018). Robust Modulation of Integrate-and-Fire Models. Neural computation. 30 [PubMed]

Wimmer K et al. (2015). Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nature communications. 6 [PubMed]

Zerlaut Y, Chemla S, Chavane F, Destexhe A. (2018). Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. Journal of computational neuroscience. 44 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.