Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF. (1996). Differences between somatic and dendritic inhibition in the hippocampus. Neuron. 16 [PubMed]

See more from authors: Miles R · Tóth K · Gulyás AI · Hájos N · Freund TF

References and models cited by this paper
References and models that cite this paper

Aradi I, Santhakumar V, Soltesz I. (2004). Impact of heterogeneous perisomatic IPSC populations on pyramidal cell firing rates. Journal of neurophysiology. 91 [PubMed]

Aradi I, Soltesz I. (2002). Modulation of network behaviour by changes in variance in interneuronal properties. The Journal of physiology. 538 [PubMed]

Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Booth V, Bose A. (2001). Neural mechanisms for generating rate and temporal codes in model CA3 pyramidal cells. Journal of neurophysiology. 85 [PubMed]

Chiu CQ et al. (2013). Compartmentalization of GABAergic inhibition by dendritic spines. Science (New York, N.Y.). 340 [PubMed]

Doischer D et al. (2008). Postnatal differentiation of basket cells from slow to fast signaling devices. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Erdi P, Kepecs A, Lengyel M. (1999). Location-dependent differences between somatic and dendritic IPSPs Neurocomputing. 26

Ferguson KA, Huh CY, Amilhon B, Williams S, Skinner FK. (2013). Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Frontiers in computational neuroscience. 7 [PubMed]

Galati DF, Hiester BG, Jones KR. (2016). Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation. Frontiers in cellular neuroscience. 10 [PubMed]

Gidon A, Segev I. (2012). Principles governing the operation of synaptic inhibition in dendrites. Neuron. 75 [PubMed]

Hardie JB, Pearce RA. (2006). Active and passive membrane properties and intrinsic kinetics shape synaptic inhibition in hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Häusser M, Clark BA. (1997). Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 19 [PubMed]

Häusser M, Mel B. (2003). Dendrites: bug or feature? Current opinion in neurobiology. 13 [PubMed]

Häusser M, Roth A. (1997). Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Kapur A, Lytton WW, Ketchum KL, Haberly LB. (1997). Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex. Journal of neurophysiology. 78 [PubMed]

Kapur A, Pearce RA, Lytton WW, Haberly LB. (1997). GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. Journal of neurophysiology. 78 [PubMed]

Kubota Y et al. (2015). Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. eLife. 4 [PubMed]

Lien CC, Martina M, Schultz JH, Ehmke H, Jonas P. (2002). Gating, modulation and subunit composition of voltage-gated K(+) channels in dendritic inhibitory interneurones of rat hippocampus. The Journal of physiology. 538 [PubMed]

Minneci F et al. (2007). Signaling properties of stratum oriens interneurons in the hippocampus of transgenic mice expressing EGFP in a subset of somatostatin-containing cells. Hippocampus. 17 [PubMed]

Mittmann W, Chadderton P, Häusser M. (2004). Neuronal microcircuits: frequency-dependent flow of inhibition. Current biology : CB. 14 [PubMed]

Morita K, Okada M, Aihara K. (2007). Selectivity and stability via dendritic nonlinearity. Neural computation. 19 [PubMed]

Müllner FE, Wierenga CJ, Bonhoeffer T. (2015). Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time. Neuron. 87 [PubMed]

Rhodes P. (2006). The properties and implications of NMDA spikes in neocortical pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Stuart G, Spruston N, Sakmann B, Häusser M. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in neurosciences. 20 [PubMed]

Taxidis J, Coombes S, Mason R, Owen MR. (2012). Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus. 22 [PubMed]

Traub RD et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of neurophysiology. 93 [PubMed]

Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F. (2005). Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 22 [PubMed]

Williams SR, Stuart GJ. (2003). Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Wilmes KA, Sprekeler H, Schreiber S. (2016). Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS computational biology. 12 [PubMed]

Yang CR, Seamans JK, Gorelova N. (1999). Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 21 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.