Bilash OM, Chavlis S, Johnson CD, Poirazi P, Basu J. (2023). Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. Cell reports. 42 [PubMed]

See more from authors: Bilash OM · Chavlis S · Johnson CD · Poirazi P · Basu J

References and models cited by this paper

Acsády L, Arabadzisz D, Freund TF. (1996). Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus. Neuroscience. 73 [PubMed]

Acsády L, Görcs TJ, Freund TF. (1996). Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience. 73 [PubMed]

Basu J et al. (2013). A cortico-hippocampal learning rule shapes inhibitory microcircuit activity to enhance hippocampal information flow. Neuron. 79 [PubMed]

Basu J et al. (2016). Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science (New York, N.Y.). 351 [PubMed]

Beaulieu-Laroche L, Harnett MT. (2018). Dendritic Spines Prevent Synaptic Voltage Clamp. Neuron. 97 [PubMed]

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. (2016). Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife. 5 [PubMed]

Bezaire MJ, Soltesz I. (2013). Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus. 23 [PubMed]

Bittner KC et al. (2015). Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nature neuroscience. 18 [PubMed]

Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC. (2017). Behavioral time scale synaptic plasticity underlies CA1 place fields. Science (New York, N.Y.). 357 [PubMed]

Bloss EB et al. (2016). Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells. Neuron. 89 [PubMed]

Branco T, Häusser M. (2010). The single dendritic branch as a fundamental functional unit in the nervous system. Current opinion in neurobiology. 20 [PubMed]

Brun VH et al. (2002). Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science (New York, N.Y.). 296 [PubMed]

Buzsáki G, Moser EI. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature neuroscience. 16 [PubMed]

Chuong AS et al. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature neuroscience. 17 [PubMed]

Cichon J, Gan WB. (2015). Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity. Nature. 520 [PubMed]

Cope DW et al. (2002). Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus. Neuroscience. 109 [PubMed]

Cutsuridis V, Cobb S, Graham BP. (2010). Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus. 20 [PubMed]

Cutsuridis V, Hasselmo M. (2012). GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus. 22 [PubMed]

Cutsuridis V, Poirazi P. (2015). A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop. Neurobiology of learning and memory. 120 [PubMed]

Deshmukh SS, Knierim JJ. (2011). Representation of non-spatial and spatial information in the lateral entorhinal cortex. Frontiers in behavioral neuroscience. 5 [PubMed]

Desmond NL, Scott CA, Jane JA, Levy WB. (1994). Ultrastructural identification of entorhinal cortical synapses in CA1 stratum lacunosum-moleculare of the rat. Hippocampus. 4 [PubMed]

Dudman JT, Tsay D, Siegelbaum SA. (2007). A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron. 56 [PubMed]

Ferguson KA, Chatzikalymniou AP, Skinner FK. (2017). Combining Theory, Model, and Experiment to Explain How Intrinsic Theta Rhythms Are Generated in an In Vitro Whole Hippocampus Preparation without Oscillatory Inputs. eNeuro. 4 [PubMed]

Francavilla R, Luo X, Magnin E, Tyan L, Topolnik L. (2015). Coordination of dendritic inhibition through local disinhibitory circuits. Frontiers in synaptic neuroscience. 7 [PubMed]

Frank LM, Brown EN, Wilson MA. (2001). A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex. Journal of neurophysiology. 86 [PubMed]

Gambino F et al. (2014). Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature. 515 [PubMed]

Gasparini S, Migliore M, Magee JC. (2004). On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Gidon A, Segev I. (2012). Principles governing the operation of synaptic inhibition in dendrites. Neuron. 75 [PubMed]

Glickfeld LL, Roberts JD, Somogyi P, Scanziani M. (2009). Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis. Nature neuroscience. 12 [PubMed]

Glickfeld LL, Scanziani M. (2006). Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nature neuroscience. 9 [PubMed]

Golding NL, Jung HY, Mickus T, Spruston N. (1999). Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. The Journal of physiology. 568 [PubMed]

Golding NL, Spruston N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron. 21 [PubMed]

Golding NL, Staff NP, Spruston N. (2002). Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature. 418 [PubMed]

Grienberger C, Chen X, Konnerth A. (2014). NMDA receptor-dependent multidendrite Ca(2+) spikes required for hippocampal burst firing in vivo. Neuron. 81 [PubMed]

Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC. (2017). Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells. Nature neuroscience. 20 [PubMed]

Gómez González JF, Mel BW, Poirazi P. (2011). Distinguishing Linear vs. Non-Linear Integration in CA1 Radial Oblique Dendrites: It's about Time. Frontiers in computational neuroscience. 5 [PubMed]

Hales JB et al. (2014). Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. Cell reports. 9 [PubMed]

Hargreaves EL, Rao G, Lee I, Knierim JJ. (2005). Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science (New York, N.Y.). 308 [PubMed]

He M et al. (2016). Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex. Neuron. 91 [PubMed]

Hsu CL, Zhao X, Milstein AD, Spruston N. (2018). Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons. Neuron. 99 [PubMed]

Häusser M, Mel B. (2003). Dendrites: bug or feature? Current opinion in neurobiology. 13 [PubMed]

Häusser M, Spruston N, Stuart GJ. (2000). Diversity and dynamics of dendritic signaling. Science (New York, N.Y.). 290 [PubMed]

Jadi M, Polsky A, Schiller J, Mel BW. (2012). Location-dependent effects of inhibition on local spiking in pyramidal neuron dendrites. PLoS computational biology. 8 [PubMed]

Jarsky T, Roxin A, Kath WL, Spruston N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature neuroscience. 8 [PubMed]

Jia H, Rochefort NL, Chen X, Konnerth A. (2010). Dendritic organization of sensory input to cortical neurons in vivo. Nature. 464 [PubMed]

Kajiwara R et al. (2008). Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1--an anatomical study in the rat. Hippocampus. 18 [PubMed]

Kamondi A, Acsády L, Buzsáki G. (1998). Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Kamondi A, Acsády L, Wang XJ, Buzsáki G. (1998). Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus. 8 [PubMed]

Kerlin A et al. (2019). Functional clustering of dendritic activity during decision-making. eLife. 8 [PubMed]

Kerr KM, Agster KL, Furtak SC, Burwell RD. (2007). Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas. Hippocampus. 17 [PubMed]

Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N. (2015). Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. eLife. 4 [PubMed]

Kitamura T et al. (2014). Island cells control temporal association memory. Science (New York, N.Y.). 343 [PubMed]

Klausberger T. (2009). GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. The European journal of neuroscience. 30 [PubMed]

Klausberger T et al. (2005). Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Klausberger T, Somogyi P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science (New York, N.Y.). 321 [PubMed]

Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J. (2009). Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science (New York, N.Y.). 325 [PubMed]

Larkum ME, Zhu JJ, Sakmann B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 398 [PubMed]

Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J. (2012). Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature. 490 [PubMed]

Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B. (2013). A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature neuroscience. 16 [PubMed]

Leão RN et al. (2012). OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nature neuroscience. 15 [PubMed]

Li Y et al. (2017). A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nature neuroscience. 20 [PubMed]

Lin JY. (2011). A user's guide to channelrhodopsin variants: features, limitations and future developments. Experimental physiology. 96 [PubMed]

Losonczy A, Magee JC. (2006). Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron. 50 [PubMed]

Losonczy A, Makara JK, Magee JC. (2008). Compartmentalized dendritic plasticity and input feature storage in neurons. Nature. 452 [PubMed]

Lovett-Barron M et al. (2014). Dendritic inhibition in the hippocampus supports fear learning. Science (New York, N.Y.). 343 [PubMed]

Lovett-Barron M et al. (2012). Regulation of neuronal input transformations by tunable dendritic inhibition. Nature neuroscience. 15 [PubMed]

Madisen L et al. (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature neuroscience. 13 [PubMed]

Megías M, Emri Z, Freund TF, Gulyás AI. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience. 102 [PubMed]

Migliore M, De Simone G, Migliore R. (2015). Effect of the initial synaptic state on the probability to induce long-term potentiation and depression. Biophysical journal. 108 [PubMed]

Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF. (1996). Differences between somatic and dendritic inhibition in the hippocampus. Neuron. 16 [PubMed]

Milstein AD et al. (2015). Inhibitory Gating of Input Comparison in the CA1 Microcircuit. Neuron. 87 [PubMed]

Miyoshi G et al. (2010). Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Moore JJ et al. (2017). Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science (New York, N.Y.). 355 [PubMed]

Murayama M et al. (2009). Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature. 457 [PubMed]

Müller C, Beck H, Coulter D, Remy S. (2012). Inhibitory control of linear and supralinear dendritic excitation in CA1 pyramidal neurons. Neuron. 75 [PubMed]

Pawelzik H, Hughes DI, Thomson AM. (2002). Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. The Journal of comparative neurology. 443 [PubMed]

Pelkey KA et al. (2017). Hippocampal GABAergic Inhibitory Interneurons. Physiological reviews. 97 [PubMed]

Petreanu L, Mao T, Sternson SM, Svoboda K. (2009). The subcellular organization of neocortical excitatory connections. Nature. 457 [PubMed]

Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. (2013). Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nature neuroscience. 16 [PubMed]

Pi HJ et al. (2013). Cortical interneurons that specialize in disinhibitory control. Nature. 503 [PubMed]

Pissadaki EK, Sidiropoulou K, Reczko M, Poirazi P. (2010). Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model. PLoS computational biology. 6 [PubMed]

Poirazi P, Brannon T, Mel BW. (2003). Pyramidal neuron as two-layer neural network. Neuron. 37 [PubMed]

Poirazi P, Brannon T, Mel BW. (2003). Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 37 [PubMed]

Poirazi P, Mel BW. (2001). Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron. 29 [PubMed]

Poirazi P, Papoutsi A. (2020). Illuminating dendritic function with computational models. Nature reviews. Neuroscience. 21 [PubMed]

Pouille F, Scanziani M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science (New York, N.Y.). 293 [PubMed]

Remondes M, Schuman EM. (2004). Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature. 431 [PubMed]

Remy S, Csicsvari J, Beck H. (2009). Activity-dependent control of neuronal output by local and global dendritic spike attenuation. Neuron. 61 [PubMed]

Remy S, Spruston N. (2007). Dendritic spikes induce single-burst long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]

Schulz JM, Knoflach F, Hernandez MC, Bischofberger J. (2018). Dendrite-targeting interneurons control synaptic NMDA-receptor activation via nonlinear a5-GABAA receptors. Nature communications. 9 [PubMed]

Sheffield ME, Dombeck DA. (2015). Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature. 517 [PubMed]

Shuman T et al. (2020). Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nature neuroscience. 23 [PubMed]

Sik A, Penttonen M, Ylinen A, Buzsáki G. (1995). Hippocampal CA1 interneurons: an in vivo intracellular labeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

Smith SL, Smith IT, Branco T, Häusser M. (2013). Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature. 503 [PubMed]

Spruston N, Jaffe DB, Johnston D. (1994). Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends in neurosciences. 17 [PubMed]

Stuart G, Schiller J, Sakmann B. (1997). Action potential initiation and propagation in rat neocortical pyramidal neurons. The Journal of physiology. 505 ( Pt 3) [PubMed]

Suh J, Rivest AJ, Nakashiba T, Tominaga T, Tonegawa S. (2011). Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. Science (New York, N.Y.). 334 [PubMed]

Susaki EA et al. (2015). Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nature protocols. 10 [PubMed]

Takahashi H, Magee JC. (2009). Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron. 62 [PubMed]

Takács VT, Szőnyi A, Freund TF, Nyiri G, Gulyás AI. (2015). Quantitative ultrastructural analysis of basket and axo-axonic cell terminals in the mouse hippocampus. Brain structure & function. 220 [PubMed]

Taniguchi H et al. (2011). A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron. 71 [PubMed]

Tomko M, Benuskova L, Jedlicka P. (2021). A new reduced-morphology model for CA1 pyramidal cells and its validation and comparison with other models using HippoUnit. Scientific reports. 11 [PubMed]

Turi GF et al. (2019). Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Hippocampus Support Goal-Oriented Spatial Learning. Neuron. 101 [PubMed]

Tyan L et al. (2014). Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Wilmes KA, Sprekeler H, Schreiber S. (2016). Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS computational biology. 12 [PubMed]

Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH. (1989). Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Progress in neurobiology. 33 [PubMed]

Zhang SJ et al. (2013). Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science (New York, N.Y.). 340 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.