Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010)


Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC. (2010). Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. Journal of computational neuroscience. 28 [PubMed]

See more from authors: Kuznetsova AY · Huertas MA · Kuznetsov AS · Paladini CA · Canavier CC

References and models cited by this paper

Amini B, Clark JW, Canavier CC. (1999). Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. Journal of neurophysiology. 82 [PubMed]

Ascoli GA. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature reviews. Neuroscience. 7 [PubMed]

Bean BP. (2007). The action potential in mammalian central neurons. Nature reviews. Neuroscience. 8 [PubMed]

Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. Journal of the neurological sciences. 20 [PubMed]

Blythe SN, Atherton JF, Bevan MD. (2007). Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro. Journal of neurophysiology. 97 [PubMed]

Blythe SN, Wokosin D, Atherton JF, Bevan MD. (2009). Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Callaway J, Yang X. (2006). Dendritic contribution to hyperpolarization recorded at the soma in SNc dopaminergic neurons. Society of Neuroscience Annual Meeting, abstract 254.7..

Canavier CC, Landry RS. (2006). An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. Journal of neurophysiology. 96 [PubMed]

Carlson NR. (1999). Foundations of Physiological Psychology. 4th ed.

Chan CS et al. (2007). 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature. 447 [PubMed]

Chiodo LA, Kapatos G. (1992). Membrane properties of identified mesencephalic dopamine neurons in primary dissociated cell culture. Synapse (New York, N.Y.). 11 [PubMed]

Deister CA, Teagarden MA, Wilson CJ, Paladini CA. (2009). An intrinsic neuronal oscillator underlies dopaminergic neuron bursting. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Gentet LJ, Williams SR. (2007). Dopamine gates action potential backpropagation in midbrain dopaminergic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Grace AA, Bunney BS. (1984). The control of firing pattern in nigral dopamine neurons: burst firing. The Journal of neuroscience : the official journal of the Society for Neuroscience. 4 [PubMed]

Grace AA, Bunney BS. (1984). The control of firing pattern in nigral dopamine neurons: single spike firing. The Journal of neuroscience : the official journal of the Society for Neuroscience. 4 [PubMed]

Guzman JN, Sánchez-Padilla J, Chan CS, Surmeier DJ. (2009). Robust pacemaking in substantia nigra dopaminergic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Hahn J, Kullmann PH, Horn JP, Levitan ES. (2006). D2 autoreceptors chronically enhance dopamine neuron pacemaker activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Hahn J, Tse TE, Levitan ES. (2003). Long-term K+ channel-mediated dampening of dopamine neuron excitability by the antipsychotic drug haloperidol. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]

Hines ML, Carnevale NT. (2001). NEURON: a tool for neuroscientists. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 7 [PubMed]

Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R. (2002). Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience. 114 [PubMed]

Kang Y, Kitai ST. (1993). A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neuroscience research. 18 [PubMed]

Kang Y, Kitai ST. (1993). Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra. Neuroscience research. 18 [PubMed]

Khaliq ZM, Bean BP. (2008). Dynamic, nonlinear feedback regulation of slow pacemaking by A-type potassium current in ventral tegmental area neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Komendantov AO, Ascoli GA. (2009). Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. Journal of neurophysiology. 101 [PubMed]

Komendantov AO, Komendantova OG, Johnson SW, Canavier CC. (2004). A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. Journal of neurophysiology. 91 [PubMed]

Kopell N, Medvedev GS. (2001). Synchronization and transient dynamics in the chains of electrically coupled FitzHugh-Nagumo oscillators Siam J Appl Mat. 61

Koyama S, Appel SB. (2006). A-type K+ current of dopamine and GABA neurons in the ventral tegmental area. Journal of neurophysiology. 96 [PubMed]

Kullmann PH, Wheeler DW, Beacom J, Horn JP. (2004). Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT. Journal of neurophysiology. 91 [PubMed]

Kuznetsov AS, Kopell NJ, Wilson CJ. (2006). Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. Journal of neurophysiology. 95 [PubMed]

Liss B et al. (2001). Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. The EMBO journal. 20 [PubMed]

Magee JC, Johnston D. (1995). Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. The Journal of physiology. 487 [PubMed]

Medvedev GS, Wilson CJ, Callaway JC, Kopell N. (2003). Dendritic Synchrony and Transient Dynamics in a Coupled Oscillator Model of the Dopaminergic Neuron Journal of computational neuroscience. 15 [PubMed]

Nedergaard S, Flatman JA, Engberg I. (1993). Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. The Journal of physiology. 466 [PubMed]

Ogata N, Tatebayashi H. (1992). Na+ current kinetics are not the determinants of the action potential duration in neurons of the rat ventral tegmental area. Brain research bulletin. 29 [PubMed]

Ping HX, Shepard PD. (1996). Apamin-sensitive Ca(2+)-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. Neuroreport. 7 [PubMed]

Ping HX, Shepard PD. (1999). Blockade of SK-type Ca2+-activated K+ channels uncovers a Ca2+-dependent slow afterdepolarization in nigral dopamine neurons. Journal of neurophysiology. 81 [PubMed]

Putzier I, Kullmann PH, Horn JP, Levitan ES. (2009). Dopamine neuron responses depend exponentially on pacemaker interval. Journal of neurophysiology. 101 [PubMed]

Putzier I, Kullmann PH, Horn JP, Levitan ES. (2009). Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Richards CD, Shiroyama T, Kitai ST. (1997). Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience. 80 [PubMed]

Schultz W. (2002). Getting formal with dopamine and reward. Neuron. 36 [PubMed]

Segev D, Korngreen A. (2007). Kinetics of two voltage-gated K+ conductances in substantia nigra dopaminergic neurons. Brain research. 1173 [PubMed]

Shepard PD, Bunney BS. (1991). Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca(2+)-activated K+ conductance. Experimental brain research. 86 [PubMed]

Silva NL, Pechura CM, Barker JL. (1990). Postnatal rat nigrostriatal dopaminergic neurons exhibit five types of potassium conductances. Journal of neurophysiology. 64 [PubMed]

Strange PG. (2001). Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacological reviews. 53 [PubMed]

Surmeier DJ, Mercer JN, Chan CS. (2005). Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Current opinion in neurobiology. 15 [PubMed]

Takada M, Kang Y, Imanishi M. (2001). Immunohistochemical localization of voltage-gated calcium channels in substantia nigra dopamine neurons. The European journal of neuroscience. 13 [PubMed]

Thomas RC. (2009). The plasma membrane calcium ATPase (PMCA) of neurones is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded. The Journal of physiology. 587 [PubMed]

Vetter P, Roth A, Häusser M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of neurophysiology. 85 [PubMed]

Wilson CJ, Callaway JC. (2000). Coupled oscillator model of the dopaminergic neuron of the substantia nigra. Journal of neurophysiology. 83 [PubMed]

Wise RA. (2004). Dopamine, learning and motivation. Nature reviews. Neuroscience. 5 [PubMed]

Wolfart J, Neuhoff H, Franz O, Roeper J. (2001). Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Wolfart J, Roeper J. (2002). Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Yung WH, Häusser MA, Jack JJ. (1991). Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. The Journal of physiology. 436 [PubMed]

Zweifel LS et al. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proceedings of the National Academy of Sciences of the United States of America. 106 [PubMed]

References and models that cite this paper

Ben-Shalom R et al. (2022). NeuroGPU: Accelerating multi-compartment, biophysically detailed neuron simulations on GPUs Journal of neuroscience methods. 366 [PubMed]

López-Jury L, Meza RC, Brown MTC, Henny P, Canavier CC. (2018). Morphological and Biophysical Determinants of the Intracellular and Extracellular Waveforms in Nigral Dopaminergic Neurons: A Computational Study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 38 [PubMed]

Meza RC, López-Jury L, Canavier CC, Henny P. (2018). Role of the Axon Initial Segment in the Control of Spontaneous Frequency of Nigral Dopaminergic Neurons In Vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 38 [PubMed]

Moubarak E et al. (2019). Robustness to Axon Initial Segment Variation Is Explained by Somatodendritic Excitability in Rat Substantia Nigra Dopaminergic Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 39 [PubMed]

Rumbell T, Kozloski J. (2019). Dimensions of control for subthreshold oscillations and spontaneous firing in dopamine neurons PLOS Computational Biology. 15

Stanley DA, Bardakjian BL, Spano ML, Ditto WL. (2011). Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains. Journal of computational neuroscience. 31 [PubMed]

Yu N, Canavier CC. (2015). A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. Journal of mathematical neuroscience. 5 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.