Human Cortical L5 Pyramidal Cell (Rich et al. 2021)


Rich S, Moradi Chameh H, Sekulic V, Valiante TA, Skinner FK. (2021). Modeling Reveals Human-Rodent Differences in H-Current Kinetics Influencing Resonance in Cortical Layer 5 Neurons. Cerebral cortex (New York, N.Y. : 1991). 31 [PubMed]

See more from authors: Rich S · Moradi Chameh H · Sekulic V · Valiante TA · Skinner FK

References and models cited by this paper

Akam T, Kullmann DM. (2014). Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nature reviews. Neuroscience. 15 [PubMed]

Almog M, Korngreen A. (2014). A Quantitative Description of Dendritic Conductances and Its Application to Dendritic Excitation in Layer 5 Pyramidal Neurons The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Almog M, Korngreen A. (2016). Is realistic neuronal modeling realistic? Journal of neurophysiology. 116 [PubMed]

Anastassiou CA, Perin R, Markram H, Koch C. (2011). Ephaptic coupling of cortical neurons. Nature neuroscience. 14 [PubMed]

Ascoli GA, Gasparini S, Medinilla V, Migliore M. (2010). Local control of postinhibitory rebound spiking in CA1 pyramidal neuron dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Beaulieu-Laroche L et al. (2018). Enhanced Dendritic Compartmentalization in Human Cortical Neurons. Cell. 175 [PubMed]

Bianchi D et al. (2012). On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. Journal of computational neuroscience. 33 [PubMed]

Biel M, Wahl-Schott C, Michalakis S, Zong X. (2009). Hyperpolarization-activated cation channels: from genes to function. Physiological reviews. 89 [PubMed]

Chang M et al. (2018). Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation. Neurobiology of disease. 109 [PubMed]

Chen S, Wang J, Siegelbaum SA. (2001). Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. The Journal of general physiology. 117 [PubMed]

Dembrow NC, Chitwood RA, Johnston D. (2010). Projection-specific neuromodulation of medial prefrontal cortex neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Dyhrfjeld-Johnsen J, Morgan RJ, Soltesz I. (2009). Double Trouble? Potential for Hyperexcitability Following Both Channelopathic up- and Downregulation of I(h) in Epilepsy. Frontiers in neuroscience. 3 [PubMed]

Eyal G et al. (2018). Human Cortical Pyramidal Neurons: From Spines to Spikes via Models. Frontiers in cellular neuroscience. 12 [PubMed]

Eyal G et al. (2016). Unique membrane properties and enhanced signal processing in human neocortical neurons. eLife. 5 [PubMed]

Farinella M, Ruedt DT, Gleeson P, Lanore F, Silver RA. (2014). Glutamate-bound NMDARs arising from in vivo-like network activity extend spatio-temporal integration in a L5 cortical pyramidal cell model. PLoS computational biology. 10 [PubMed]

Fries P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in cognitive sciences. 9 [PubMed]

Gidon A et al. (2020). Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science (New York, N.Y.). 367 [PubMed]

Goaillard JM, Taylor AL, Schulz DJ, Marder E. (2009). Functional consequences of animal-to-animal variation in circuit parameters. Nature neuroscience. 12 [PubMed]

Golowasch J, Goldman MS, Abbott LF, Marder E. (2002). Failure of averaging in the construction of a conductance-based neuron model. Journal of neurophysiology. 87 [PubMed]

Gouwens NW et al. (2018). Systematic generation of biophysically detailed models for diverse cortical neuron types. Nature communications. 9 [PubMed]

Hay E, Hill S, Schürmann F, Markram H, Segev I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS computational biology. 7 [PubMed]

Higgs MH, Spain WJ. (2009). Conditional bursting enhances resonant firing in neocortical layer 2-3 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Hines ML, Carnevale NT. (2001). NEURON: a tool for neuroscientists. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 7 [PubMed]

Hodge RD et al. (2019). Conserved cell types with divergent features in human versus mouse cortex. Nature. 573 [PubMed]

Hu H, Vervaeke K, Graham LJ, Storm JF. (2009). Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Hu H, Vervaeke K, Storm JF. (2002). Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. The Journal of physiology. 545 [PubMed]

Hutcheon B, Miura RM, Puil E. (1996). Subthreshold membrane resonance in neocortical neurons. Journal of neurophysiology. 76 [PubMed]

Hutcheon B, Yarom Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in neurosciences. 23 [PubMed]

Kalmbach BE et al. (2018). h-Channels Contribute to Divergent Intrinsic Membrane Properties of Supragranular Pyramidal Neurons in Human versus Mouse Cerebral Cortex. Neuron. 100 [PubMed]

Keren N, Bar-Yehuda D, Korngreen A. (2009). Experimentally guided modelling of dendritic excitability in rat neocortical pyramidal neurones. The Journal of physiology. 587 [PubMed]

Kispersky TJ, Fernandez FR, Economo MN, White JA. (2012). Spike resonance properties in hippocampal O-LM cells are dependent on refractory dynamics. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

Kole MH, Hallermann S, Stuart GJ. (2006). Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Köhling R, Avoli M. (2006). Methodological approaches to exploring epileptic disorders in the human brain in vitro. Journal of neuroscience methods. 155 [PubMed]

Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J. (2009). Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science (New York, N.Y.). 325 [PubMed]

Larkum ME, Zhu JJ. (2002). Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Larkum ME, Zhu JJ, Sakmann B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 398 [PubMed]

Leung LS, Yu HW. (1998). Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. Journal of neurophysiology. 79 [PubMed]

Marder E, Goaillard JM. (2006). Variability, compensation and homeostasis in neuron and network function. Nature reviews. Neuroscience. 7 [PubMed]

Marder E, Taylor AL. (2011). Multiple models to capture the variability in biological neurons and networks. Nature neuroscience. 14 [PubMed]

Mohan H et al. (2015). Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex. Cerebral cortex (New York, N.Y. : 1991). 25 [PubMed]

Molnár G et al. (2008). Complex events initiated by individual spikes in the human cerebral cortex. PLoS biology. 6 [PubMed]

Prinz AA, Bucher D, Marder E. (2004). Similar network activity from disparate circuit parameters. Nature neuroscience. 7 [PubMed]

Puil E, Gimbarzevsky B, Miura RM. (1986). Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. Journal of neurophysiology. 55 [PubMed]

Ramaswamy S, Markram H. (2015). Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron. Frontiers in cellular neuroscience. 9 [PubMed]

Ransdell JL, Nair SS, Schulz DJ. (2013). Neurons within the same network independently achieve conserved output by differentially balancing variable conductance magnitudes. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Rich S et al. (2019). Inhibitory Network Bistability Explains Increased Interneuronal Activity Prior to Seizure Onset. Frontiers in neural circuits. 13 [PubMed]

Richardson MJ, Brunel N, Hakim V. (2003). From subthreshold to firing-rate resonance. Journal of neurophysiology. 89 [PubMed]

Roth A, Bahl A. (2009). Divide et impera: optimizing compartmental models of neurons step by step. The Journal of physiology. 587 [PubMed]

Rotstein HG. (2017). Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties. Journal of computational neuroscience. 43 [PubMed]

Rotstein HG, Nadim F. (2014). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of computational neuroscience. 37 [PubMed]

Schmidt SL, Dorsett CR, Iyengar AK, Fröhlich F. (2017). Interaction of Intrinsic and Synaptic Currents Mediate Network Resonance Driven by Layer V Pyramidal Cells. Cerebral cortex (New York, N.Y. : 1991). 27 [PubMed]

Sekulić V, Chen TC, Lawrence JJ, Skinner FK. (2015). Dendritic distributions of I h channels in experimentally-derived multi-compartment models of oriens-lacunosum/moleculare (O-LM) hippocampal interneurons. Frontiers in synaptic neuroscience. 7 [PubMed]

Sekulić V, Skinner FK. (2017). Computational models of O-LM cells are recruited by low or high theta frequency inputs depending on h-channel distributions. eLife. 6 [PubMed]

Shai AS, Anastassiou CA, Larkum ME, Koch C. (2015). Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: coincidence detection through bursting. PLoS computational biology. 11 [PubMed]

Silva LR, Amitai Y, Connors BW. (1991). Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science (New York, N.Y.). 251 [PubMed]

Stark E et al. (2013). Inhibition-induced theta resonance in cortical circuits. Neuron. 80 [PubMed]

Testa-Silva G et al. (2014). High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS biology. 12 [PubMed]

Toledo-Rodriguez M et al. (2004). Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cerebral cortex (New York, N.Y. : 1991). 14 [PubMed]

Ulrich D. (2002). Dendritic resonance in rat neocortical pyramidal cells. Journal of neurophysiology. 87 [PubMed]

Vaidya SP, Johnston D. (2013). Temporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neurons. Nature neuroscience. 16 [PubMed]

Verhoog MB et al. (2013). Mechanisms underlying the rules for associative plasticity at adult human neocortical synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Womelsdorf T, Valiante TA, Sahin NT, Miller KJ, Tiesinga P. (2014). Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nature neuroscience. 17 [PubMed]

Zemankovics R, Káli S, Paulsen O, Freund TF, Hájos N. (2010). Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. The Journal of physiology. 588 [PubMed]

References and models that cite this paper

Mäki-Marttunen T, Mäki-Marttunen V. (2022). Excitatory and inhibitory effects of HCN channel modulation on excitability of layer V pyramidal cells PLoS computational biology. 18 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.