Anderson EB, Mitchell JF, Reynolds JH. (2011). Attentional modulation of firing rate varies with burstiness across putative pyramidal neurons in macaque visual area V4. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Atallah BV, Scanziani M, Carandini M. (2014). Atallah et al. reply. Nature. 508 [PubMed]
Bair W, Koch C, Newsome W, Britten K. (1994). Power spectrum analysis of bursting cells in area MT in the behaving monkey. The Journal of neuroscience : the official journal of the Society for Neuroscience. 14 [PubMed]
Binzegger T, Douglas RJ, Martin KA. (2004). A quantitative map of the circuit of cat primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
Bock DD et al. (2011). Network anatomy and in vivo physiology of visual cortical neurons. Nature. 471 [PubMed]
Carandini M. (2012). From circuits to behavior: a bridge too far? Nature neuroscience. 15 [PubMed]
Cattaneo A, Maffei L, Morrone C. (1981). Two firing patterns in the discharge of complex cells encoding different attributes of the visual stimulus. Experimental brain research. 43 [PubMed]
Chalifoux JR, Carter AG. (2011). GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
El-Boustani S, Wilson NR, Runyan CA, Sur M. (2014). El-Boustani et al. reply. Nature. 508 [PubMed]
Felleman DJ, Van Essen DC. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex (New York, N.Y. : 1991). 1 [PubMed]
Gabbiani F, Krapp HG, Koch C, Laurent G. (2002). Multiplicative computation in a visual neuron sensitive to looming. Nature. 420 [PubMed]
Glickfeld LL, Andermann ML, Bonin V, Reid RC. (2013). Cortico-cortical projections in mouse visual cortex are functionally target specific. Nature neuroscience. 16 [PubMed]
Hay E, Hill S, Schürmann F, Markram H, Segev I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS computational biology. 7 [PubMed]
Huberman AD, Niell CM. (2011). What can mice tell us about how vision works? Trends in neurosciences. 34 [PubMed]
Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ. (2013). The organization of two new cortical interneuronal circuits. Nature neuroscience. 16 [PubMed]
Johnson RR, Burkhalter A. (1996). Microcircuitry of forward and feedback connections within rat visual cortex. The Journal of comparative neurology. 368 [PubMed]
Johnson RR, Burkhalter A. (1997). A polysynaptic feedback circuit in rat visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Koch C. (1999). Biophysics Of Computation: Information Processing in Single Neurons.
Larkum ME, Kaiser KM, Sakmann B. (1999). Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proceedings of the National Academy of Sciences of the United States of America. 96 [PubMed]
Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J. (2009). Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science (New York, N.Y.). 325 [PubMed]
Larkum ME, Waters J, Sakmann B, Helmchen F. (2007). Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Ledergerber D, Larkum ME. (2010). Properties of layer 6 pyramidal neuron apical dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]
Lee SH, Kwan AC, Dan Y. (2014). Interneuron subtypes and orientation tuning. Nature. 508 [PubMed]
Lee SH et al. (2012). Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature. 488 [PubMed]
Livingstone MS, Freeman DC, Hubel DH. (1996). Visual responses in V1 of freely viewing monkeys. Cold Spring Harbor symposia on quantitative biology. 61 [PubMed]
Magee J, Hoffman D, Colbert C, Johnston D. (1998). Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annual review of physiology. 60 [PubMed]
Marshel JH, Garrett ME, Nauhaus I, Callaway EM. (2011). Functional specialization of seven mouse visual cortical areas. Neuron. 72 [PubMed]
Milojkovic BA, Zhou WL, Antic SD. (2007). Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. The Journal of physiology. 585 [PubMed]
Oviedo H, Reyes AD. (2002). Boosting of neuronal firing evoked with asynchronous and synchronous inputs to the dendrite. Nature neuroscience. 5 [PubMed]
Palmer L, Murayama M, Larkum M. (2012). Inhibitory Regulation of Dendritic Activity in vivo. Frontiers in neural circuits. 6 [PubMed]
Palmer LM et al. (2014). NMDA spikes enhance action potential generation during sensory input. Nature neuroscience. 17 [PubMed]
Pérez-Garci E, Gassmann M, Bettler B, Larkum ME. (2006). The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron. 50 [PubMed]
Rockland KS, Pandya DN. (1979). Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain research. 179 [PubMed]
Schiller J, Schiller Y, Stuart G, Sakmann B. (1997). Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. The Journal of physiology. 505 ( Pt 3) [PubMed]
Seamans JK, Gorelova NA, Yang CR. (1997). Contributions of voltage-gated Ca2+ channels in the proximal versus distal dendrites to synaptic integration in prefrontal cortical neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Smith SL, Smith IT, Branco T, Häusser M. (2013). Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature. 503 [PubMed]
Stuart G, Spruston N, Sakmann B, Häusser M. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in neurosciences. 20 [PubMed]
Wang Q, Burkhalter A. (2007). Area map of mouse visual cortex. The Journal of comparative neurology. 502 [PubMed]
Williams SR, Stuart GJ. (1999). Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. The Journal of physiology. 521 Pt 2 [PubMed]
Yang W, Carrasquillo Y, Hooks BM, Nerbonne JM, Burkhalter A. (2013). Distinct balance of excitation and inhibition in an interareal feedforward and feedback circuit of mouse visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
de Kock CP, Sakmann B. (2008). High frequency action potential bursts (>or= 100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex. The Journal of physiology. 586 [PubMed]
Arkhipov A et al. (2018). Visual physiology of the layer 4 cortical circuit in silico. PLoS computational biology. 14 [PubMed]
Dan O, Hopp E, Borst A, Segev I. (2018). Non-uniform weighting of local motion inputs underlies dendritic computation in the fly visual system. Scientific reports. 8 [PubMed]
Ebner C, Clopath C, Jedlicka P, Cuntz H. (2019). Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell reports. 29 [PubMed]
Galloni AR, Laffere A, Rancz E. (2020). Apical length governs computational diversity of layer 5 pyramidal neurons. eLife. 9 [PubMed]
Jaeger D et al. (2017). Robust Transmission of Rate Coding in the Inhibitory Purkinje Cell to Cerebellar Nuclei Pathway in Awake Mice PLOS Computational Biology.
Masoli S, Ottaviani A, Casali S, D'Angelo E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS computational biology. 16 [PubMed]
Rich S, Moradi Chameh H, Sekulic V, Valiante TA, Skinner FK. (2021). Modeling Reveals Human-Rodent Differences in H-Current Kinetics Influencing Resonance in Cortical Layer 5 Neurons. Cerebral cortex (New York, N.Y. : 1991). 31 [PubMed]
Schwarzacher SW, Cuntz H, Jedlicka P, Beining M, Mongiat LA. (2017). T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells eLife.