Frey U, Morris RG. (1997). Synaptic tagging and long-term potentiation. Nature. 385 [PubMed]

See more from authors: Frey U · Morris RG

References and models cited by this paper
References and models that cite this paper

Bhalla US. (2017). Synaptic input sequence discrimination on behavioral timescales mediated by reaction-diffusion chemistry in dendrites. eLife. 6 [PubMed]

Bhalla US, Iyengar R. (1999). Emergent properties of networks of biological signaling pathways. Science (New York, N.Y.). 283 [PubMed]

Blackwell KT et al. (2019). Molecular mechanisms underlying striatal synaptic plasticity: relevance to chronic alcohol consumption and seeking. The European journal of neuroscience. 49 [PubMed]

Bono J, Clopath C. (2017). Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nature communications. 8 [PubMed]

Clopath C, Büsing L, Vasilaki E, Gerstner W. (2010). Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature neuroscience. 13 [PubMed]

Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W. (2008). Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS computational biology. 4 [PubMed]

Costa RP et al. (2017). Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity. Neuron. 96 [PubMed]

Frank AC et al. (2018). Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory. Nature communications. 9 [PubMed]

Helfer P, Shultz TR. (2018). Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking. PLoS computational biology. 14 [PubMed]

Helfer P, Shultz TR. (2018). Coupled feedback loops maintain synaptic long-term potentiation: A computational model arXiv.

Holmes WR. (2000). Models of calmodulin trapping and CaM kinase II activation in a dendritic spine. Journal of computational neuroscience. 8 [PubMed]

Izhikevich EM. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Jȩdrzejewska-Szmek J, Luczak V, Abel T, Blackwell KT. (2017). ß-adrenergic signaling broadly contributes to LTP induction. PLoS computational biology. 13 [PubMed]

Kastellakis G, Silva AJ, Poirazi P. (2016). Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites. Cell reports. 17 [PubMed]

Kim M, Huang T, Abel T, Blackwell KT. (2010). Temporal sensitivity of protein kinase a activation in late-phase long term potentiation. PLoS computational biology. 6 [PubMed]

Kim M et al. (2011). Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS computational biology. 7 [PubMed]

Liu Z, Ren J, Murphy TH. (2003). Decoding of synaptic voltage waveforms by specific classes of recombinant high-threshold Ca(2+) channels. The Journal of physiology. 553 [PubMed]

Mattioni M, Le Novère N. (2013). Integration of biochemical and electrical signaling-multiscale model of the medium spiny neuron of the striatum. PloS one. 8 [PubMed]

Miningou Zobon NT, Jędrzejewska-Szmek J, Blackwell KT. (2021). Temporal pattern and synergy influence activity of ERK signaling pathways during L-LTP induction eLife. 10 [PubMed]

Smolen P, Baxter DA, Byrne JH. (2006). A model of the roles of essential kinases in the induction and expression of late long-term potentiation. Biophysical journal. 90 [PubMed]

Toyoizumi T, Pfister JP, Aihara K, Gerstner W. (2007). Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural computation. 19 [PubMed]

Tzilivaki A, Kastellakis G, Poirazi P. (2019). Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators Nature communications. 10 [PubMed]

Williams AH, O'Donnell C, Sejnowski TJ, O'Leary T. (2016). Dendritic trafficking faces physiologically critical speed-precision tradeoffs. eLife. 5 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.