Sabatini BL, Oertner TG, Svoboda K. (2002). The life cycle of Ca(2+) ions in dendritic spines. Neuron. 33 [PubMed]

See more from authors: Sabatini BL · Oertner TG · Svoboda K

References and models cited by this paper
References and models that cite this paper

Ashhad S, Narayanan R. (2013). Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. The Journal of physiology. 591 [PubMed]

Badoual M et al. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. International journal of neural systems. 16 [PubMed]

Basak R, Narayanan R. (2018). Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS computational biology. 14 [PubMed]

Bell M, Bartol T, Sejnowski T, Rangamani P. (2019). Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium. The Journal of general physiology. 151 [PubMed]

Cai Y, Gavornik JP, Cooper LN, Yeung LC, Shouval HZ. (2007). Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus. Journal of neurophysiology. 97 [PubMed]

Cornelisse LN, van Elburg RA, Meredith RM, Yuste R, Mansvelder HD. (2007). High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity. PloS one. 2 [PubMed]

Delgado JY, Gómez-González JF, Desai NS. (2010). Pyramidal neuron conductance state gates spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Doi T, Kuroda S, Michikawa T, Kawato M. (2005). Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Franks KM, Sejnowski TJ. (2002). Complexity of calcium signaling in synaptic spines. BioEssays : news and reviews in molecular, cellular and developmental biology. 24 [PubMed]

Graham BP, Saudargiene A, Cobb S. (2014). Spine head calcium as a measure of summed postsynaptic activity for driving synaptic plasticity. Neural computation. 26 [PubMed]

Graupner M, Brunel N. (2007). STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS computational biology. 3 [PubMed]

Graupner M, Brunel N. (2012). Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proceedings of the National Academy of Sciences of the United States of America. 109 [PubMed]

Gulledge AT, Carnevale NT, Stuart GJ. (2012). Electrical advantages of dendritic spines. PloS one. 7 [PubMed]

Iacobucci GJ, Popescu GK. (2019). Spatial Coupling Tunes NMDA Receptor Responses via Ca2+ Diffusion. The Journal of neuroscience : the official journal of the Society for Neuroscience. 39 [PubMed]

Kampa BM, Stuart GJ. (2006). Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Kim B, Hawes SL, Gillani F, Wallace LJ, Blackwell KT. (2013). Signaling pathways involved in striatal synaptic plasticity are sensitive to temporal pattern and exhibit spatial specificity. PLoS computational biology. 9 [PubMed]

Kim M, Huang T, Abel T, Blackwell KT. (2010). Temporal sensitivity of protein kinase a activation in late-phase long term potentiation. PLoS computational biology. 6 [PubMed]

Kim M et al. (2011). Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS computational biology. 7 [PubMed]

Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N. (2015). Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. eLife. 4 [PubMed]

Manita S, Ross WN. (2009). Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Mo CH, Gu M, Koch C. (2004). A learning rule for local synaptic interactions between excitation and shunting inhibition. Neural computation. 16 [PubMed]

O'Donnell C, Nolan MF, van Rossum MC. (2011). Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Palmer LM, Stuart GJ. (2009). Membrane potential changes in dendritic spines during action potentials and synaptic input. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Scott R, Rusakov DA. (2006). Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber-CA3 pyramidal cell synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Solinas SMG, Edelmann E, Leßmann V, Migliore M. (2019). A kinetic model for Brain-Derived Neurotrophic Factor mediated spike timing-dependent LTP. PLoS computational biology. 15 [PubMed]

Sterratt DC, Groen MR, Meredith RM, van Ooyen A. (2012). Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy. PLoS computational biology. 8 [PubMed]

Traub RD, Buhl EH, Gloveli T, Whittington MA. (2003). Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. Journal of neurophysiology. 89 [PubMed]

Yu X, Shouval HZ, Knierim JJ. (2008). A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields. Journal of neurophysiology. 100 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.