Van Vreeswijk C, Abbott LF, Ermentrout GB. (1994). When inhibition not excitation synchronizes neural firing. Journal of computational neuroscience. 1 [PubMed]

See more from authors: Van Vreeswijk C · Abbott LF · Ermentrout GB

References and models cited by this paper
References and models that cite this paper

Acker CD, Kopell N, White JA. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of computational neuroscience. 15 [PubMed]

Aradi I, Erdi P. (1996). Signal generation and propagation in the olfactory bulb: multicompartmental modeling Computers And Mathematics With Applications. 32

Aradi I, Erdi P. (1996). MULTICOMPARTMENTAL MODELING OF THE OLFACTORY BULB Cybernetics and Systems. 27

Aradi I, Soltesz I. (2002). Modulation of network behaviour by changes in variance in interneuronal properties. The Journal of physiology. 538 [PubMed]

Bartos M et al. (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]

Bathellier B, Lagier S, Faure P, Lledo PM. (2006). Circuit properties generating gamma oscillations in a network model of the olfactory bulb. Journal of neurophysiology. 95 [PubMed]

Booth V, Bose A. (2001). Neural mechanisms for generating rate and temporal codes in model CA3 pyramidal cells. Journal of neurophysiology. 85 [PubMed]

Booth V, Bose A. (2002). Burst synchrony patterns in hippocampal pyramidal cell model networks. Network (Bristol, England). 13 [PubMed]

Bose A, Booth V, Recce M. (2000). A temporal mechanism for generating the phase precession of hippocampal place cells. Journal of computational neuroscience. 9 [PubMed]

Brette R. (2012). Computing with neural synchrony. PLoS computational biology. 8 [PubMed]

Brown E, Moehlis J, Holmes P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural computation. 16 [PubMed]

Brunel N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of computational neuroscience. 8 [PubMed]

Brunel N, Hakim V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural computation. 11 [PubMed]

Brunel N, Hansel D. (2006). How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural computation. 18 [PubMed]

Börgers C, Kopell N. (2005). Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural computation. 17 [PubMed]

Chandrasekaran L, Matveev V, Bose A. (2009). Multistability of clustered states in a globally inhibitory network Physica D: Nonlinear Phenomena. 238(3)

Chartove JA, McCarthy MM, Pittman-Polletta BR, Kopell NJ. (2020). A biophysical model of striatal microcircuits suggests gamma and beta oscillations interleaved at delta/theta frequencies mediate periodicity in motor control PLOS Computational Biology. 16

Chow CC, Kopell N. (2000). Dynamics of spiking neurons with electrical coupling. Neural computation. 12 [PubMed]

Ermentrout B, Saunders D. (2006). Phase resetting and coupling of noisy neural oscillators. Journal of computational neuroscience. 20 [PubMed]

Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35

Gao J, Holmes P. (2007). On the dynamics of electrically-coupled neurons with inhibitory synapses. Journal of computational neuroscience. 22 [PubMed]

Geisler C, Brunel N, Wang XJ. (2005). Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. Journal of neurophysiology. 94 [PubMed]

Goldberg JA, Deister CA, Wilson CJ. (2007). Response properties and synchronization of rhythmically firing dendritic neurons. Journal of neurophysiology. 97 [PubMed]

Hansel D, Mato G. (2003). Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural computation. 15 [PubMed]

Jeong HY, Gutkin B. (2007). Synchrony of neuronal oscillations controlled by GABAergic reversal potentials. Neural computation. 19 [PubMed]

Jones SR, Pinto DJ, Kaper TJ, Kopell N. (2000). Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study. Journal of computational neuroscience. 9 [PubMed]

Kanamaru T, Sekine M. (2005). Synchronized firings in the networks of class 1 excitable neurons with excitatory and inhibitory connections and their dependences on the forms of interactions. Neural computation. 17 [PubMed]

Komarov M, Bazhenov M. (2016). Linking dynamics of the inhibitory network to the input structure. Journal of computational neuroscience. 41 [PubMed]

Kopell N, Borgers C, Pervouchine D, Tort AB, Malerba P. (2010). Gamma and theta rhythms in biophysical models of hippocampal circuits Hippocampal Microcircuits: A Computational Modeller`s Resource Book. Ch. 15..

Kömek K, Bard Ermentrout G, Walker CP, Cho RY. (2012). Dopamine and gamma band synchrony in schizophrenia--insights from computational and empirical studies. The European journal of neuroscience. 36 [PubMed]

Li YX, Wang YQ, Miura R. (2003). Clustering in small networks of excitatory neurons with heterogeneous coupling strengths. Journal of computational neuroscience. 14 [PubMed]

LoFaro T, Kopell N. (1999). Timing regulation in a network reduced from voltage-gated equations to a one-dimensional map. Journal of mathematical biology. 38 [PubMed]

Loebel A, Tsodyks M. (2002). Computation by ensemble synchronization in recurrent networks with synaptic depression. Journal of computational neuroscience. 13 [PubMed]

Maex R, De Schutter E. (2003). Resonant synchronization in heterogeneous networks of inhibitory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Matveev V, Bose A, Nadim F. (2007). Capturing the bursting dynamics of a two-cell inhibitory network using a one-dimensional map. Journal of computational neuroscience. 23 [PubMed]

McTavish TS, Migliore M, Shepherd GM, Hines ML. (2012). Mitral cell spike synchrony modulated by dendrodendritic synapse location. Frontiers in computational neuroscience. 6 [PubMed]

Mongillo G, Amit DJ. (2001). Oscillations and irregular emission in networks of linear spiking neurons. Journal of computational neuroscience. 11 [PubMed]

Nadim F, Manor Y, Nusbaum MP, Marder E. (1998). Frequency regulation of a slow rhythm by a fast periodic input. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Nicola W, Campbell SA. (2013). Bifurcations of large networks of two-dimensional integrate and fire neurons. Journal of computational neuroscience. 35 [PubMed]

Oh M, Matveev V. (2009). Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons. Journal of computational neuroscience. 26 [PubMed]

Pfeuty B, Mato G, Golomb D, Hansel D. (2003). Electrical synapses and synchrony: the role of intrinsic currents. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Pfeuty B, Mato G, Golomb D, Hansel D. (2005). The combined effects of inhibitory and electrical synapses in synchrony. Neural computation. 17 [PubMed]

Rotstein HG et al. (2005). Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. Journal of neurophysiology. 94 [PubMed]

Sekerli M, Butera RJ. (2005). Oscillations in a Simple Neuromechanical System: Underlying Mechanisms J Comp Neurosci. 19

Susin E, Destexhe A. (2021). Integration, coincidence detection and resonance in networks of spiking neurons expressing gamma oscillations and asynchronous states PLoS computational biology. 17 [PubMed]

Susswein AJ, Hurwitz I, Thorne R, Byrne JH, Baxter DA. (2002). Mechanisms underlying fictive feeding in aplysia: coupling between a large neuron with plateau potentials activity and a spiking neuron. Journal of neurophysiology. 87 [PubMed]

Tabak J, Moore LE. (1998). Simulation and parameter estimation study of a simple neuronal model of rhythm generation: role of NMDA and non-NMDA receptors. Journal of computational neuroscience. 5 [PubMed]

Takekawa T, Aoyagi T, Fukai T. (2007). Synchronous and asynchronous bursting states: role of intrinsic neural dynamics. Journal of computational neuroscience. 23 [PubMed]

Talathi SS, Carney PR, Khargonekar PP. (2011). Control of neural synchrony using channelrhodopsin-2: a computational study. Journal of computational neuroscience. 31 [PubMed]

Talathi SS, Hwang DU, Ditto WL. (2008). Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. Journal of computational neuroscience. 25 [PubMed]

Tikidji-Hamburyan RA, Martínez JJ, White JA, Canavier CC. (2015). Resonant Interneurons Can Increase Robustness of Gamma Oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Vida I, Bartos M, Jonas P. (2006). Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron. 49 [PubMed]

Wang XJ, Buzsáki G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

White JA, Chow CC, Ritt J, Soto-Treviño C, Kopell N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of computational neuroscience. 5 [PubMed]

Yoshioka M. (2002). Spike-timing-dependent learning rule to encode spatiotemporal patterns in a network of spiking neurons. Physical review. E, Statistical, nonlinear, and soft matter physics. 65 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.