Angulo-Garcia D, Berke JD, Torcini A. (2016). Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks: A Simple Model for the Collective Activity of Striatal Projection Neurons. PLoS computational biology. 12 [PubMed]
Belic JJ, Kumar A, Hellgren Kotaleski J. (2017). Interactions in the Striatal Network with Different Oscillation Frequencies Artificial Neural Networks and Machine Learning -- ICANN 2017.
Chartove JA, McCarthy MM, Pittman-Polletta BR, Kopell NJ. (2020). A biophysical model of striatal microcircuits suggests gamma and beta oscillations interleaved at delta/theta frequencies mediate periodicity in motor control PLOS Computational Biology. 16
Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT. (2015). Desynchronization of fast-spiking interneurons reduces ß-band oscillations and imbalance in firing in the dopamine-depleted striatum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]
Du K et al. (2017). Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proceedings of the National Academy of Sciences of the United States of America. 114 [PubMed]
Gidon A, Segev I. (2012). Principles governing the operation of synaptic inhibition in dendrites. Neuron. 75 [PubMed]
Girard B, Tabareau N, Pham QC, Berthoz A, Slotine JJ. (2008). Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection. Neural networks : the official journal of the International Neural Network Society. 21 [PubMed]
Gruber AJ, Dayan P, Gutkin BS, Solla SA. (2006). Dopamine modulation in the basal ganglia locks the gate to working memory. Journal of computational neuroscience. 20 [PubMed]
Hjorth J, Blackwell KT, Kotaleski JH. (2009). Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]
Hjorth JJJ et al. (2020). The microcircuits of striatum in silico. Proceedings of the National Academy of Sciences of the United States of America. 117 [PubMed]
Humphries MD, Stewart RD, Gurney KN. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Humphries MD, Wood R, Gurney K. (2009). Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit. Neural networks : the official journal of the International Neural Network Society. 22 [PubMed]
Humphries MD, Wood R, Gurney K. (2010). Reconstructing the three-dimensional GABAergic microcircuit of the striatum. PLoS computational biology. 6 [PubMed]
Kotaleski JH, Plenz D, Blackwell KT. (2006). Using potassium currents to solve signal-to-noise problems in inhibitory feedforward networks of the striatum. Journal of neurophysiology. 95 [PubMed]
Kotaleski JH et al. (2011). Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact Front. Syst. Neurosci.. 5:57
Leblois A, Boraud T, Meissner W, Bergman H, Hansel D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Liénard J, Girard B. (2014). A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. Journal of computational neuroscience. 36 [PubMed]
Petroccione MA et al. (2023). Neuronal glutamate transporters control reciprocal inhibition and gain modulation in D1 medium spiny neurons. eLife. 12 [PubMed]
Scheler G. (2013). Learning intrinsic excitability in medium spiny neurons F1000Research. 2 [PubMed]
Wickens JR, Arbuthnott GW, Shindou T. (2007). Simulation of GABA function in the basal ganglia: computational models of GABAergic mechanisms in basal ganglia function. Progress in brain research. 160 [PubMed]
Wolf JA et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]