Abbott LF, Varela JA, Sen K, Nelson SB. (1997). Synaptic depression and cortical gain control. Science (New York, N.Y.). 275 [PubMed]

See more from authors: Abbott LF · Varela JA · Sen K · Nelson SB

References and models cited by this paper
References and models that cite this paper

Abbott LF, Nelson SB. (2000). Synaptic plasticity: taming the beast. Nature neuroscience. 3 Suppl [PubMed]

Archie KA, Mel BW. (2000). A model for intradendritic computation of binocular disparity. Nature neuroscience. 3 [PubMed]

Baker PM, Pennefather PS, Orser BA, Skinner FK. (2002). Disruption of coherent oscillations in inhibitory networks with anesthetics: role of GABA(A) receptor desensitization. Journal of neurophysiology. 88 [PubMed]

Banitt Y, Martin KA, Segev I. (2007). A biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Beverlin B, Kakalios J, Nykamp D, Netoff TI. (2012). Dynamical changes in neurons during seizures determine tonic to clonic shift. Journal of computational neuroscience. 33 [PubMed]

Boxwell A, Terman D, Frank M, Yanagawa Y, Travers JB. (2018). A computational analysis of signal fidelity in the rostral nucleus of the solitary tract. Journal of neurophysiology. 119 [PubMed]

Buonomano DV. (2000). Decoding temporal information: A model based on short-term synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Caplan JS, Williams AH, Marder E. (2014). Many parameter sets in a multicompartment model oscillator are robust to temperature perturbations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Chandrasekaran L, Matveev V, Bose A. (2009). Multistability of clustered states in a globally inhibitory network Physica D: Nonlinear Phenomena. 238(3)

Cisi RR, Kohn AF. (2008). Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web-based architecture. Journal of computational neuroscience. 25 [PubMed]

Costa RP, Sjöström PJ, van Rossum MC. (2013). Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits. Frontiers in computational neuroscience. 7 [PubMed]

Doiron B, Longtin A, Berman N, Maler L. (2001). Subtractive and divisive inhibition: effect of voltage-dependent inhibitory conductances and noise. Neural computation. 13 [PubMed]

Esser SK, Hill SL, Tononi G. (2007). Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep. 30 [PubMed]

Feng J, Brown D, Feerick S. (1999). Variability of firing of Hodgkin-Huxley and FitzHugh-Nagumo neurons with stochastic synaptic input. Physical Review Letters. 82

Feng J, Zhang P. (2001). Behavior of integrate-and-fire and Hodgkin-Huxley models with correlated inputs. Physical review. E, Statistical, nonlinear, and soft matter physics. 63 [PubMed]

Ferrario A et al. (2021). From decision to action: Detailed modelling of frog tadpoles reveals neuronal mechanisms of decision-making and reproduces unpredictable swimming movements in response to sensory signals PLoS computational biology. 17 [PubMed]

Fuhrmann G, Segev I, Markram H, Tsodyks M. (2002). Coding of temporal information by activity-dependent synapses. Journal of neurophysiology. 87 [PubMed]

Goldman MS. (2004). Enhancement of information transmission efficiency by synaptic failures. Neural computation. 16 [PubMed]

Hennig MH, Postlethwaite M, Forsythe ID, Graham BP. (2008). Interactions between multiple sources of short-term plasticity during evoked and spontaneous activity at the rat calyx of Held. The Journal of physiology. 586 [PubMed]

Higley MJ, Contreras D. (2006). Balanced excitation and inhibition determine spike timing during frequency adaptation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Hill S, Tononi G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of neurophysiology. 93 [PubMed]

Houweling AR et al. (2002). Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. The Journal of physiology. 542 [PubMed]

Häusser M, Clark BA. (1997). Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 19 [PubMed]

Jalil S, Grigull J, Skinner FK. (2004). Novel bursting patterns emerging from model inhibitory networks with synaptic depression. Journal of computational neuroscience. 17 [PubMed]

Khalil R, Moftah MZ, Moustafa AA. (2017). The effects of dynamical synapses on firing rate activity: a spiking neural network model. The European journal of neuroscience. 46 [PubMed]

Kotaleski JH et al. (2011). Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact Front. Syst. Neurosci.. 5:57

Kozlov A, Kotaleski JH, Aurell E, Grillner S, Lansner A. (2001). Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation. Journal of computational neuroscience. 11 [PubMed]

Laing CR, Chow CC. (2002). A spiking neuron model for binocular rivalry. Journal of computational neuroscience. 12 [PubMed]

Large EW, Crawford JD. (2002). Auditory temporal computation: interval selectivity based on post-inhibitory rebound. Journal of computational neuroscience. 13 [PubMed]

Lee CC, Anton M, Poon CS, McRae GJ. (2009). A kinetic model unifying presynaptic short-term facilitation and depression. Journal of computational neuroscience. 26 [PubMed]

Li G, Henriquez CS, Fröhlich F. (2017). Unified Thalamic Model Generates Multiple Distinct Oscillations with State-dependent Entrainment by Stimulation PLOS Computational Biology. 13(10)

Loebel A, Tsodyks M. (2002). Computation by ensemble synchronization in recurrent networks with synaptic depression. Journal of computational neuroscience. 13 [PubMed]

London M, Schreibman A, Häusser M, Larkum ME, Segev I. (2002). The information efficacy of a synapse. Nature neuroscience. 5 [PubMed]

Luthman J et al. (2011). STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum (London, England). 10 [PubMed]

Maass W, Natschlager T. (1997). Networks of spiking neurons can emulate arbitrary Hopfield nets in temporal coding Network: Computation In Neural Systems. 8

Manor Y, Bose A, Booth V, Nadim F. (2003). Contribution of synaptic depression to phase maintenance in a model rhythmic network. Journal of neurophysiology. 90 [PubMed]

Masuda N, Aihara K. (2003). Duality of rate coding and temporal coding in multilayered feedforward networks. Neural computation. 15 [PubMed]

Migliore M, De Simone G, Migliore R. (2015). Effect of the initial synaptic state on the probability to induce long-term potentiation and depression. Biophysical journal. 108 [PubMed]

Migliore M, Lansky P. (1999). Long-term potentiation and depression induced by a stochastic conditioning of a model synapse. Biophysical journal. 77 [PubMed]

Mikula S, Niebur E. (2003). Synaptic depression leads to nonmonotonic frequency dependence in the coincidence detector. Neural computation. 15 [PubMed]

Moldakarimov S, Rollenhagen JE, Olson CR, Chow CC. (2005). Competitive dynamics in cortical responses to visual stimuli. Journal of neurophysiology. 94 [PubMed]

Mukunda CL, Narayanan R. (2017). Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. The Journal of physiology. 595 [PubMed]

Nadim F, Manor Y, Kopell N, Marder E. (1999). Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. Proceedings of the National Academy of Sciences of the United States of America. 96 [PubMed]

O'Reilly RC, Frank MJ. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural computation. 18 [PubMed]

O`Reilly RC, Frank MJ. (2005). Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia Neural Comput. 18

Petroccione MA et al. (2023). Neuronal glutamate transporters control reciprocal inhibition and gain modulation in D1 medium spiny neurons. eLife. 12 [PubMed]

Phares GA, Antzoulatos EG, Baxter DA, Byrne JH. (2003). Burst-induced synaptic depression and its modulation contribute to information transfer at Aplysia sensorimotor synapses: empirical and computational analyses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Renart A, Moreno-Bote R, Wang XJ, Parga N. (2007). Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural computation. 19 [PubMed]

Richardson MJ, Melamed O, Silberberg G, Gerstner W, Markram H. (2005). Short-term synaptic plasticity orchestrates the response of pyramidal cells and interneurons to population bursts. Journal of computational neuroscience. 18 [PubMed]

Romani S, Amit DJ, Mongillo G. (2006). Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. Journal of computational neuroscience. 20 [PubMed]

Sejnowski TJ, Steriade M, Timofeev I, Houweling AR, Bazhenov M. (1999). Cortical and thalamic components of augmenting responses: A modeling study Neurocomputing. 26-27

Snippe HP, van Hateren JH. (2007). Dynamics of nonlinear feedback control. Neural computation. 19 [PubMed]

Steuber V, Jaeger D. (2013). Modeling the generation of output by the cerebellar nuclei. Neural networks : the official journal of the International Neural Network Society. 47 [PubMed]

Tsodyks M, Uziel A, Markram H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Versace M, Ames H, Léveillé J, Fortenberry B, Gorchetchnikov A. (2008). KInNeSS: a modular framework for computational neuroscience. Neuroinformatics. 6 [PubMed]

Wang XJ, Liu Y, Sanchez-Vives MV, McCormick DA. (2003). Adaptation and temporal decorrelation by single neurons in the primary visual cortex. Journal of neurophysiology. 89 [PubMed]

Yang Z, Hennig MH, Postlethwaite M, Forsythe ID, Graham BP. (2009). Wide-band information transmission at the calyx of Held. Neural computation. 21 [PubMed]

Zhou Y, Colburn HS. (2010). A modeling study of the effects of membrane afterhyperpolarization on spike interval statistics and on ILD encoding in the lateral superior olive. Journal of neurophysiology. 103 [PubMed]

Zsiros V, Aradi I, Maccaferri G. (2007). Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus. The Journal of physiology. 578 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.