GP Neuron, somatic and dendritic phase response curves (Schultheiss et al. 2011)


Schultheiss NW, Edgerton JR, Jaeger D. (2010). Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

See more from authors: Schultheiss NW · Edgerton JR · Jaeger D

References and models cited by this paper

Abouzeid A, Ermentrout B. (2009). Type-II phase resetting curve is optimal for stochastic synchrony. Physical review. E, Statistical, nonlinear, and soft matter physics. 80 [PubMed]

Achard P, De Schutter E. (2006). Complex parameter landscape for a complex neuron model. PLoS computational biology. 2 [PubMed]

Achuthan S, Canavier CC. (2009). Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Acker CD, Kopell N, White JA. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of computational neuroscience. 15 [PubMed]

Baranauskas G, Tkatch T, Nagata K, Yeh JZ, Surmeier DJ. (2003). Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nature neuroscience. 6 [PubMed]

Baranauskas G, Tkatch T, Surmeier DJ. (1999). Delayed rectifier currents in rat globus pallidus neurons are attributable to Kv2.1 and Kv3.1/3.2 K(+) channels. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Bergman H, Wichmann T, Karmon B, DeLong MR. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of neurophysiology. 72 [PubMed]

Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends in neurosciences. 25 [PubMed]

Bogaard A, Parent J, Zochowski M, Booth V. (2009). Interaction of cellular and network mechanisms in spatiotemporal pattern formation in neuronal networks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Cai X et al. (2004). Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron. 44 [PubMed]

Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Chen CC, Abrams S, Pinhas A, Brumberg JC. (2009). Morphological heterogeneity of layer VI neurons in mouse barrel cortex. The Journal of comparative neurology. 512 [PubMed]

Crook SM, Ermentrout GB, Bower JM. (1998). Spike frequency adaptation affects the synchronization properties of networks of cortical oscillations. Neural computation. 10 [PubMed]

Crook SM, Ermentrout GB, Bower JM. (1998). Dendritic and synaptic effects in systems of coupled cortical oscillators. Journal of computational neuroscience. 5 [PubMed]

Deister CA, Chan CS, Surmeier DJ, Wilson CJ. (2009). Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Ermentrout B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural computation. 8 [PubMed]

Ermentrout B, Goel P. (2002). Synchrony, stability, and firing patterns in pulse coupled oscillators Physica D. 163

Ermentrout B, Pascal M, Gutkin B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural computation. 13 [PubMed]

Ermentrout GB, Urban NN, Galan RF. (2007). Stochastic dynamics of uncoupled neural oscillators: Fokker-Planck studies with the finite element method. Physical Review E. 76

Ermentrout GB, Urban NN, Galan RF. (2007). Reliability and stochastic synchronization in type I vs. type II neural oscillators Neurocomputing. 70

Falls WM, Park MR, Kitai ST. (1983). An intracellular HRP study of the rat globus pallidus. II. Fine structural characteristics and synaptic connections of medially located large GP neurons. The Journal of comparative neurology. 221 [PubMed]

Gamper N, Stockand JD, Shapiro MS. (2003). Subunit-specific modulation of KCNQ potassium channels by Src tyrosine kinase. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Goldberg JA, Deister CA, Wilson CJ. (2007). Response properties and synchronization of rhythmically firing dendritic neurons. Journal of neurophysiology. 97 [PubMed]

Goldberg JA, Wilson CJ. (2005). Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Gutkin BS, Ermentrout GB, Reyes AD. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of neurophysiology. 94 [PubMed]

Günay C, Edgerton JR, Jaeger D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Hallworth NE, Wilson CJ, Bevan MD. (2003). Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Hansel D, Mato G, Meunier C. (1995). Synchrony in excitatory neural networks. Neural computation. 7 [PubMed]

Hanson JE, Smith Y. (2002). Subcellular distribution of high-voltage-activated calcium channel subtypes in rat globus pallidus neurons. The Journal of comparative neurology. 442 [PubMed]

Hanson JE, Smith Y, Jaeger D. (2004). Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Hernández A et al. (2006). Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. Journal of neurophysiology. 96 [PubMed]

Hirschberg B, Maylie J, Adelman JP, Marrion NV. (1998). Gating of recombinant small-conductance Ca-activated K+ channels by calcium. The Journal of general physiology. 111 [PubMed]

Hirschberg B, Maylie J, Adelman JP, Marrion NV. (1999). Gating properties of single SK channels in hippocampal CA1 pyramidal neurons. Biophysical journal. 77 [PubMed]

Keen JE et al. (1999). Domains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Khaliq ZM, Gouwens NW, Raman IM. (2003). The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Kita H, Kitai ST. (1994). The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain research. 636 [PubMed]

Komendantov AO, Ascoli GA. (2009). Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. Journal of neurophysiology. 101 [PubMed]

Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain research. 941 [PubMed]

Loucif KC, Wilson CL, Baig R, Lacey MG, Stanford IM. (2005). Functional interconnectivity between the globus pallidus and the subthalamic nucleus in the mouse brain slice. The Journal of physiology. 567 [PubMed]

Magill PJ, Bolam JP, Bevan MD. (2000). Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Magill PJ, Bolam JP, Bevan MD. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience. 106 [PubMed]

Magistretti J, Alonso A. (1999). Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study. The Journal of general physiology. 114 [PubMed]

Magistretti J, Alonso A. (2002). Fine gating properties of channels responsible for persistent sodium current generation in entorhinal cortex neurons. The Journal of general physiology. 120 [PubMed]

Magistretti J, Ragsdale DS, Alonso A. (1999). Direct demonstration of persistent Na+ channel activity in dendritic processes of mammalian cortical neurones. The Journal of physiology. 521 Pt 3 [PubMed]

Maher BJ, Westbrook GL. (2005). SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb. Journal of neurophysiology. 94 [PubMed]

Mainen ZF, Sejnowski TJ. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 382 [PubMed]

Mallet N et al. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Marella S, Ermentrout GB. (2008). Class-II neurons display a higher degree of stochastic synchronization than class-I neurons. Physical review. E, Statistical, nonlinear, and soft matter physics. 77 [PubMed]

Marrion NV, Tavalin SJ. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature. 395 [PubMed]

Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ. (2007). Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Netoff TI, Acker CD, Bettencourt JC, White JA. (2005). Beyond two-cell networks: experimental measurement of neuronal responses to multiple synaptic inputs. Journal of computational neuroscience. 18 [PubMed]

Netoff TI et al. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of neurophysiology. 93 [PubMed]

Netoff TI, Clewley R, Arno S, Keck T, White JA. (2004). Epilepsy in small-world networks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Nini A, Feingold A, Slovin H, Bergman H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. Journal of neurophysiology. 74 [PubMed]

Oprisan SA, Canavier CC. (2002). The influence of limit cycle topology on the phase resetting curve. Neural computation. 14 [PubMed]

Park MR, Falls WM, Kitai ST. (1982). An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis. The Journal of comparative neurology. 211 [PubMed]

Plenz D, Kital ST. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature. 400 [PubMed]

Preyer AJ, Butera RJ. (2005). Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. Physical review letters. 95 [PubMed]

Prinz AA, Billimoria CP, Marder E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of neurophysiology. 90 [PubMed]

Prinz AA, Thirumalai V, Marder E. (2003). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Prole DL, Marrion NV. (2004). Ionic permeation and conduction properties of neuronal KCNQ2/KCNQ3 potassium channels. Biophysical journal. 86 [PubMed]

Raman IM, Bean BP. (2001). Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophysical journal. 80 [PubMed]

Ramanathan S, Tkatch T, Atherton JF, Wilson CJ, Bevan MD. (2008). D2-like dopamine receptors modulate SKCa channel function in subthalamic nucleus neurons through inhibition of Cav2.2 channels. Journal of neurophysiology. 99 [PubMed]

Raz A, Vaadia E, Bergman H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Rinzel J, Ermentrout B. (1998). Analysis of neural excitability and oscillations. Methods In Neuronal Modeling 2nd Edition.

Ruskin DN et al. (1999). Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. Journal of neurophysiology. 81 [PubMed]

Sailer CA et al. (2002). Regional differences in distribution and functional expression of small-conductance Ca2+-activated K+ channels in rat brain. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Shen GY, Chen WR, Midtgaard J, Shepherd GM, Hines ML. (1999). Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. Journal of neurophysiology. 82 [PubMed]

Shink E, Smith Y. (1995). Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. The Journal of comparative neurology. 358 [PubMed]

Stiefel KM, Gutkin BS, Sejnowski TJ. (2008). Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons. PloS one. 3 [PubMed]

Stiefel KM, Gutkin BS, Sejnowski TJ. (2009). The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. Journal of computational neuroscience. 26 [PubMed]

Stiefel KM, Sejnowski TJ. (2007). Mapping function onto neuronal morphology. Journal of neurophysiology. 98 [PubMed]

Tateno T, Robinson HP. (2007). Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. Biophysical journal. 92 [PubMed]

Taylor AL, Goaillard JM, Marder E. (2009). How multiple conductances determine electrophysiological properties in a multicompartment model. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Terman D, Rubin JE, Yew AC, Wilson CJ. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Tkatch T, Baranauskas G, Surmeier DJ. (2000). Kv4.2 mRNA abundance and A-type K(+) current amplitude are linearly related in basal ganglia and basal forebrain neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Tsubo Y, Takada M, Reyes AD, Fukai T. (2007). Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex. The European journal of neuroscience. 25 [PubMed]

Urbain N et al. (2000). Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. The European journal of neuroscience. 12 [PubMed]

Vetter P, Roth A, Häusser M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of neurophysiology. 85 [PubMed]

Wang J, Chen S, Nolan MF, Siegelbaum SA. (2002). Activity-dependent regulation of HCN pacemaker channels by cyclic AMP: signaling through dynamic allosteric coupling. Neuron. 36 [PubMed]

White JA, Netoff TI. (2008). Synchronization in hybrid neuronal networks Computational neuroscience in epilepsy.

Wilson CJ, Deister CA. (2008). Variability of fast afterhyperpolarization currents reduces the regularity of spontaneous firing in globus pallidus neurons Soc Neurosci Abstr. 34

Xia XM et al. (1998). Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature. 395 [PubMed]

Yelnik J, Percheron G, François C. (1984). A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations. The Journal of comparative neurology. 227 [PubMed]

References and models that cite this paper

Couto J, Linaro D, De Schutter E, Giugliano M. (2015). On the firing rate dependency of the phase response curve of rat Purkinje neurons in vitro. PLoS computational biology. 11 [PubMed]

Edgerton JR, Hanson JE, Günay C, Jaeger D. (2010). Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Edgerton JR, Jaeger D. (2011). Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Fujita T, Fukai T, Kitano K. (2012). Influences of membrane properties on phase response curve and synchronization stability in a model globus pallidus neuron. Journal of computational neuroscience. 32 [PubMed]

Maran SK, Sieling FH, Demla K, Prinz AA, Canavier CC. (2011). Responses of a bursting pacemaker to excitation reveal spatial segregation between bursting and spiking mechanisms. Journal of computational neuroscience. 31 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.