Andjelic S et al. (2009). Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. Journal of neurophysiology. 101 [PubMed]
Antic SD, Zhou WL, Moore AR, Short SM, Ikonomu KD. (2010). The decade of the dendritic NMDA spike. Journal of neuroscience research. 88 [PubMed]
Archie KA, Mel BW. (2000). A model for intradendritic computation of binocular disparity. Nature neuroscience. 3 [PubMed]
Behabadi BF, Mel BW. (2014). Mechanisms underlying subunit independence in pyramidal neuron dendrites. Proceedings of the National Academy of Sciences of the United States of America. 111 [PubMed]
Behabadi BF, Polsky A, Jadi M, Schiller J, Mel BW. (2012). Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites. PLoS computational biology. 8 [PubMed]
Berger T, Larkum ME, Lüscher HR. (2001). High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. Journal of neurophysiology. 85 [PubMed]
Branco T, Häusser M. (2011). Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron. 69 [PubMed]
Chalifoux JR, Carter AG. (2011). Glutamate spillover promotes the generation of NMDA spikes. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Chance FS, Abbott LF, Reyes AD. (2002). Gain modulation from background synaptic input. Neuron. 35 [PubMed]
Chen X, Leischner U, Rochefort NL, Nelken I, Konnerth A. (2011). Functional mapping of single spines in cortical neurons in vivo. Nature. 475 [PubMed]
Constantinople CM, Bruno RM. (2013). Deep cortical layers are activated directly by thalamus. Science (New York, N.Y.). 340 [PubMed]
Cruz-Martín A et al. (2014). A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature. 507 [PubMed]
Destexhe A, Paré D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of neurophysiology. 81 [PubMed]
Dugas-Ford J, Rowell JJ, Ragsdale CW. (2012). Cell-type homologies and the origins of the neocortex. Proceedings of the National Academy of Sciences of the United States of America. 109 [PubMed]
Farinella M, Ruedt DT, Gleeson P, Lanore F, Silver RA. (2014). Glutamate-bound NMDARs arising from in vivo-like network activity extend spatio-temporal integration in a L5 cortical pyramidal cell model. PLoS computational biology. 10 [PubMed]
Franco SJ et al. (2012). Fate-restricted neural progenitors in the mammalian cerebral cortex. Science (New York, N.Y.). 337 [PubMed]
Gidon A, Segev I. (2012). Principles governing the operation of synaptic inhibition in dendrites. Neuron. 75 [PubMed]
Gordon U, Polsky A, Schiller J. (2006). Plasticity compartments in basal dendrites of neocortical pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Grienberger C, Chen X, Konnerth A. (2014). NMDA receptor-dependent multidendrite Ca(2+) spikes required for hippocampal burst firing in vivo. Neuron. 81 [PubMed]
Haider B, Häusser M, Carandini M. (2013). Inhibition dominates sensory responses in the awake cortex. Nature. 493 [PubMed]
Harnett MT, Xu NL, Magee JC, Williams SR. (2013). Potassium channels control the interaction between active dendritic integration compartments in layer 5 cortical pyramidal neurons. Neuron. 79 [PubMed]
Hill DN, Varga Z, Jia H, Sakmann B, Konnerth A. (2013). Multibranch activity in basal and tuft dendrites during firing of layer 5 cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America. 110 [PubMed]
Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM. (2004). ModelDB: A Database to Support Computational Neuroscience. Journal of computational neuroscience. 17 [PubMed]
Häusser M, Mel B. (2003). Dendrites: bug or feature? Current opinion in neurobiology. 13 [PubMed]
Jadi M, Polsky A, Schiller J, Mel BW. (2012). Location-dependent effects of inhibition on local spiking in pyramidal neuron dendrites. PLoS computational biology. 8 [PubMed]
Jia H, Rochefort NL, Chen X, Konnerth A. (2010). Dendritic organization of sensory input to cortical neurons in vivo. Nature. 464 [PubMed]
Kleindienst T, Winnubst J, Roth-Alpermann C, Bonhoeffer T, Lohmann C. (2011). Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites. Neuron. 72 [PubMed]
Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J. (2009). Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science (New York, N.Y.). 325 [PubMed]
Larkum ME, Waters J, Sakmann B, Helmchen F. (2007). Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Larkum ME, Zhu JJ, Sakmann B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 398 [PubMed]
Larkum ME, Zhu JJ, Sakmann B. (2001). Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. The Journal of physiology. 533 [PubMed]
Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J. (2012). Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature. 490 [PubMed]
London M, Häusser M. (2005). Dendritic computation. Annual review of neuroscience. 28 [PubMed]
Magee JC, Cook EP. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature neuroscience. 3 [PubMed]
Major G, Larkum ME, Schiller J. (2013). Active properties of neocortical pyramidal neuron dendrites. Annual review of neuroscience. 36 [PubMed]
Major G, Polsky A, Denk W, Schiller J, Tank DW. (2008). Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. Journal of neurophysiology. 99 [PubMed]
Makara JK, Magee JC. (2013). Variable dendritic integration in hippocampal CA3 pyramidal neurons. Neuron. 80 [PubMed]
Makino H, Malinow R. (2011). Compartmentalized versus global synaptic plasticity on dendrites controlled by experience. Neuron. 72 [PubMed]
Milojkovic BA, Radojicic MS, Antic SD. (2005). A strict correlation between dendritic and somatic plateau depolarizations in the rat prefrontal cortex pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Murayama M et al. (2009). Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature. 457 [PubMed]
Nevian T, Larkum ME, Polsky A, Schiller J. (2007). Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature neuroscience. 10 [PubMed]
Oswald AM, Reyes AD. (2008). Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. Journal of neurophysiology. 99 [PubMed]
Palmer LM et al. (2014). NMDA spikes enhance action potential generation during sensory input. Nature neuroscience. 17 [PubMed]
Poirazi P, Brannon T, Mel BW. (2003). Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 37 [PubMed]
Poirazi P, Brannon T, Mel BW. (2003). Pyramidal neuron as two-layer neural network. Neuron. 37 [PubMed]
Polsky A, Mel B, Schiller J. (2009). Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]
Polsky A, Mel BW, Schiller J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nature neuroscience. 7 [PubMed]
Rall W, Rinzel J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophysical journal. 13 [PubMed]
Rhodes P. (2006). The properties and implications of NMDA spikes in neocortical pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Rhodes PA. (2008). Recoding patterns of sensory input: higher-order features and the function of nonlinear dendritic trees. Neural computation. 20 [PubMed]
Sarid L, Bruno R, Sakmann B, Segev I, Feldmeyer D. (2007). Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]
Sarid L, Feldmeyer D, Gidon A, Sakmann B, Segev I. (2015). Contribution of intracolumnar layer 2/3-to-layer 2/3 excitatory connections in shaping the response to whisker deflection in rat barrel cortex. Cerebral cortex (New York, N.Y. : 1991). 25 [PubMed]
Schiller J, Major G, Koester HJ, Schiller Y. (2000). NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature. 404 [PubMed]
Schiller J, Schiller Y. (2001). NMDA receptor-mediated dendritic spikes and coincident signal amplification. Current opinion in neurobiology. 11 [PubMed]
Schiller J, Schiller Y, Stuart G, Sakmann B. (1997). Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. The Journal of physiology. 505 ( Pt 3) [PubMed]
Smith SL, Smith IT, Branco T, Häusser M. (2013). Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature. 503 [PubMed]
Takahashi N et al. (2012). Locally synchronized synaptic inputs. Science (New York, N.Y.). 335 [PubMed]
Trevelyan AJ, Jack J. (2002). Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. The Journal of physiology. 539 [PubMed]
Williams SR, Stuart GJ. (2002). Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science (New York, N.Y.). 295 [PubMed]
Wu XE, Mel BW. (2009). Capacity-enhancing synaptic learning rules in a medial temporal lobe online learning model. Neuron. 62 [PubMed]
Yuste R, Gutnick MJ, Saar D, Delaney KR, Tank DW. (1994). Ca2+ accumulations in dendrites of neocortical pyramidal neurons: an apical band and evidence for two functional compartments. Neuron. 13 [PubMed]
Zador AM, Agmon-Snir H, Segev I. (1995). The morphoelectrotonic transform: a graphical approach to dendritic function. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]
Cazé RD, Jarvis S, Foust AJ, Schultz SR. (2017). Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity. Neural computation. 29 [PubMed]
Doron M, Chindemi G, Muller E, Markram H, Segev I. (2017). Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell reports. 21 [PubMed]
Ebner C, Clopath C, Jedlicka P, Cuntz H. (2019). Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell reports. 29 [PubMed]
Trpevski D, Khodadadi Z, Carannante I, Hellgren Kotaleski J. (2023). Glutamate spillover drives robust all-or-none dendritic plateau potentials-an in silico investigation using models of striatal projection neurons. Frontiers in cellular neuroscience. 17 [PubMed]