Voltage-based STDP synapse (Clopath et al. 2010)


Clopath C, Büsing L, Vasilaki E, Gerstner W. (2010). Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature neuroscience. 13 [PubMed]

See more from authors: Clopath C · Büsing L · Vasilaki E · Gerstner W

References and models cited by this paper

Artola A, Bröcher S, Singer W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature. 347 [PubMed]

Badel L et al. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of neurophysiology. 99 [PubMed]

Blais BS, Intrator N, Shouval HZ, Cooper LN. (1998). Receptive Field Formation in Natural Scene Environments. Comparison of Single-Cell Learning Rules. Neural computation. 10 [PubMed]

Brader JM, Senn W, Fusi S. (2007). Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural computation. 19 [PubMed]

Brette R, Gerstner W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of neurophysiology. 94 [PubMed]

Buonomano DV, Merzenich MM. (1998). Cortical plasticity: from synapses to maps. Annual review of neuroscience. 21 [PubMed]

Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W. (2008). Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS computational biology. 4 [PubMed]

Dan Y, Poo MM. (2004). Spike timing-dependent plasticity of neural circuits. Neuron. 44 [PubMed]

Dudek SM, Bear MF. (1993). Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Frey U, Morris RG. (1997). Synaptic tagging and long-term potentiation. Nature. 385 [PubMed]

Gerstner W, Kempter R, van Hemmen JL, Wagner H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature. 383 [PubMed]

Golding NL, Staff NP, Spruston N. (2002). Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature. 418 [PubMed]

Hardie J, Spruston N. (2009). Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Hebb DO. (1949). The Organization Of Behavior.

Izhikevich EM, Edelman GM. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America. 105 [PubMed]

Jadhav SP, Wolfe J, Feldman DE. (2009). Sparse temporal coding of elementary tactile features during active whisker sensation. Nature neuroscience. 12 [PubMed]

Kampa BM, Letzkus JJ, Stuart GJ. (2006). Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity. The Journal of physiology. 574 [PubMed]

Karhunen J, Hyvarinen A, Oja J. (2001). Independent Component Analysis.

Kistler WM, Gerstner W. (2002). Spiking neuron models.

Kozloski J, Cecchi GA. (2008). Topological effects of synaptic spike timing-dependent plasticity Preprint at http: slash slash arxiv.org slash abs slash 0810.0029.

Lefort S, Tomm C, Floyd Sarria JC, Petersen CC. (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron. 61 [PubMed]

Legenstein R, Naeger C, Maass W. (2005). What can a neuron learn with spike-timing-dependent plasticity? Neural computation. 17 [PubMed]

Levy N, Horn D, Meilijson I, Ruppin E. (2001). Distributed synchrony in a cell assembly of spiking neurons. Neural networks : the official journal of the International Neural Network Society. 14 [PubMed]

Lisman J, Spruston N. (2005). Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nature neuroscience. 8 [PubMed]

Lisman JE, Zhabotinsky AM. (2001). A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron. 31 [PubMed]

Lubenov EV, Siapas AG. (2008). Decoupling through synchrony in neuronal circuits with propagation delays. Neuron. 58 [PubMed]

Malenka RC, Bear MF. (2004). LTP and LTD: an embarrassment of riches. Neuron. 44 [PubMed]

Markram H, Lübke J, Frotscher M, Sakmann B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (New York, N.Y.). 275 [PubMed]

Miller KD. (1994). A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 14 [PubMed]

Morrison A, Aertsen A, Diesmann M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural computation. 19 [PubMed]

Nevian T, Sakmann B. (2006). Spine Ca2+ signaling in spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Ngezahayo A, Schachner M, Artola A. (2000). Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

O'Connor DH, Wittenberg GM, Wang SS. (2005). Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. Journal of neurophysiology. 94 [PubMed]

Oja E. (1982). A simplified neuron model as a principal component analyzer. Journal of mathematical biology. 15 [PubMed]

Olshausen BA, Field DJ. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 381 [PubMed]

Pfister JP, Gerstner W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Remy S, Spruston N. (2007). Dendritic spikes induce single-burst long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]

Saudargiene A, Porr B, Wörgötter F. (2004). How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural computation. 16 [PubMed]

Senn W, Markram H, Tsodyks M. (2001). An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural computation. 13 [PubMed]

Shouval HZ, Bear MF, Cooper LN. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]

Shouval HZ, Intrator N, Cooper L, Blais BB. (2004). Theory of cortical plasticity.

Sjöström PJ, Häusser M. (2006). A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron. 51 [PubMed]

Sjöström PJ, Turrigiano GG, Nelson SB. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 32 [PubMed]

Sjöström PJ, Turrigiano GG, Nelson SB. (2003). Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron. 39 [PubMed]

Song S, Abbott LF. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron. 32 [PubMed]

Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS biology. 3 [PubMed]

Tsodyks MV, Markram H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America. 94 [PubMed]

Turrigiano GG, Nelson SB. (2004). Homeostatic plasticity in the developing nervous system. Nature reviews. Neuroscience. 5 [PubMed]

Wang HX, Gerkin RC, Nauen DW, Bi GQ. (2005). Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature neuroscience. 8 [PubMed]

Yuste R, Bonhoeffer T. (2004). Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nature reviews. Neuroscience. 5 [PubMed]

References and models that cite this paper

Bono J, Clopath C. (2017). Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nature communications. 8 [PubMed]

Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O. (2017). Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. eLife. 6 [PubMed]

Clopath C, Pedrosa V. (2017). The role of neuromodulators in cortical plasticity. A computational perspective. Front. Synaptic Neurosci.. 8

Costa RP, Froemke RC, Sjöström PJ, van Rossum MC. (2015). Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning. eLife. 4 [PubMed]

Costa RP et al. (2017). Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity. Neuron. 96 [PubMed]

Cui Y et al. (2016). Endocannabinoid dynamics gate spike-timing dependent depression and potentiation. eLife. 5 [PubMed]

Delgado JY, Gómez-González JF, Desai NS. (2010). Pyramidal neuron conductance state gates spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Ebner C, Clopath C, Jedlicka P, Cuntz H. (2019). Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell reports. 29 [PubMed]

Esposito U, Giugliano M, Vasilaki E. (2014). Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity. Frontiers in computational neuroscience. 8 [PubMed]

Esposito U, Giugliano M, van Rossum M, Vasilaki E. (2014). Measuring symmetry, asymmetry and randomness in neural network connectivity. PloS one. 9 [PubMed]

González-Rueda A, Pedrosa V, Feord RC, Clopath C, Paulsen O. (2018). Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo. Neuron. 97 [PubMed]

Graham BP, Saudargiene A, Cobb S. (2014). Spine head calcium as a measure of summed postsynaptic activity for driving synaptic plasticity. Neural computation. 26 [PubMed]

Graupner M, Brunel N. (2012). Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proceedings of the National Academy of Sciences of the United States of America. 109 [PubMed]

Hiratani N, Fukai T. (2017). Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37 [PubMed]

Jedlicka P, Benuskova L, Abraham WC. (2015). A Voltage-Based STDP Rule Combined with Fast BCM-Like Metaplasticity Accounts for LTP and Concurrent "Heterosynaptic" LTD in the Dentate Gyrus In Vivo. PLoS computational biology. 11 [PubMed]

King PD, Zylberberg J, DeWeese MR. (2013). Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Legenstein R, Maass W. (2011). Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Maes A, Barahona M, Clopath C. (2020). Learning spatiotemporal signals using a recurrent spiking network that discretizes time. PLoS computational biology. 16 [PubMed]

Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML. (2010). Postsynaptic signal transduction models for long-term potentiation and depression. Frontiers in computational neuroscience. 4 [PubMed]

Muller L, Brette R, Gutkin B. (2011). Spike-timing dependent plasticity and feed-forward input oscillations produce precise and invariant spike phase-locking. Frontiers in computational neuroscience. 5 [PubMed]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW. (2011). Emergence of physiological oscillation frequencies in a computer model of neocortex. Frontiers in computational neuroscience. 5 [PubMed]

Sadeh S, Clopath C, Rotter S. (2015). Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS computational biology. 11 [PubMed]

Sadeh S, Clopath C, Rotter S. (2015). Processing of Feature Selectivity in Cortical Networks with Specific Connectivity. PloS one. 10 [PubMed]

Sollini J, Chapuis GA, Clopath C, Chadderton P. (2018). ON-OFF receptive fields in auditory cortex diverge during development and contribute to directional sweep selectivity. Nature communications. 9 [PubMed]

Spreizer S, Aertsen A, Kumar A. (2019). From space to time: Spatial inhomogeneities lead to the emergence of spatiotemporal sequences in spiking neuronal networks. PLoS computational biology. 15 [PubMed]

Vasilaki E, Giugliano M. (2014). Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PloS one. 9 [PubMed]

Wilmes KA, Clopath C. (2019). Inhibitory microcircuits for top-down plasticity of sensory representations. Nature communications. 10 [PubMed]

Wilmes KA, Sprekeler H, Schreiber S. (2016). Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS computational biology. 12 [PubMed]

Xu X, Cang J, Riecke H. (2020). Development and Binocular Matching of Orientation Selectivity in Visual Cortex: A Computational Model. Journal of neurophysiology. 123 [PubMed]

Świetlik D, Białowąs J, Kusiak A, Cichońska D. (2018). Memory and forgetting processes with the firing neuron model. Folia morphologica. 77 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.