Chirp stimulus responses in a morphologically realistic model (Narayanan and Johnston, 2007)


Narayanan R, Johnston D. (2007). Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron. 56 [PubMed]

See more from authors: Narayanan R · Johnston D

References and models cited by this paper

Alonso A, García-Austt E. (1987). Neuronal sources of theta rhythm in the entorhinal cortex of the rat. II. Phase relations between unit discharges and theta field potentials. Experimental brain research. 67 [PubMed]

Bienenstock EL, Cooper LN, Munro PW. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2 [PubMed]

Bland BH, Colom LV. (1993). Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Progress in neurobiology. 41 [PubMed]

Bliss TV, Collingridge GL. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 361 [PubMed]

Brager DH, Johnston D. (2007). Plasticity of intrinsic excitability during long-term depression is mediated through mGluR-dependent changes in I(h) in hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Buzsáki G. (2002). Theta oscillations in the hippocampus. Neuron. 33 [PubMed]

Cantrell AR, Catterall WA. (2001). Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nature reviews. Neuroscience. 2 [PubMed]

Delmas P, Brown DA. (2005). Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nature reviews. Neuroscience. 6 [PubMed]

Engel AK, Fries P, Singer W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nature reviews. Neuroscience. 2 [PubMed]

Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR. (2001). Efficiency and ambiguity in an adaptive neural code. Nature. 412 [PubMed]

Fan Y et al. (2005). Activity-dependent decrease of excitability in rat hippocampal neurons through increases in I(h). Nature neuroscience. 8 [PubMed]

Frick A, Magee J, Johnston D. (2004). LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature neuroscience. 7 [PubMed]

Guertin PA, Hounsgaard J. (2006). Conditional intrinsic voltage oscillations in mature vertebrate neurons undergo specific changes in culture. Journal of neurophysiology. 95 [PubMed]

Haedo RJ, Golowasch J. (2006). Ionic mechanism underlying recovery of rhythmic activity in adult isolated neurons. Journal of neurophysiology. 96 [PubMed]

Harris-Warrick RM, Marder E. (1991). Modulation of neural networks for behavior. Annual review of neuroscience. 14 [PubMed]

Hines ML, Carnevale NT. (2006). The NEURON Book.

Hirsch HV, Spinelli DN. (1970). Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science (New York, N.Y.). 168 [PubMed]

Hu H, Vervaeke K, Storm JF. (2002). Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. The Journal of physiology. 545 [PubMed]

Hutcheon B, Miura RM, Puil E. (1996). Models of subthreshold membrane resonance in neocortical neurons. Journal of neurophysiology. 76 [PubMed]

Hutcheon B, Yarom Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in neurosciences. 23 [PubMed]

Kim J, Jung SC, Clemens AM, Petralia RS, Hoffman DA. (2007). Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. Neuron. 54 [PubMed]

Leung LS, Yu HW. (1998). Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. Journal of neurophysiology. 79 [PubMed]

Leung LW, Yim CY. (1991). Intrinsic membrane potential oscillations in hippocampal neurons in vitro. Brain research. 553 [PubMed]

Llinás RR. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science (New York, N.Y.). 242 [PubMed]

Lörincz A, Notomi T, Tamás G, Shigemoto R, Nusser Z. (2002). Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nature neuroscience. 5 [PubMed]

Magee JC. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Marder E, Calabrese RL. (1996). Principles of rhythmic motor pattern generation. Physiological reviews. 76 [PubMed]

Mortensen U, Nachtigall C. (2000). Visual channels, Hebbian assemblies and the effect of Hebb's rule. Biological cybernetics. 82 [PubMed]

O'Keefe J, Burgess N. (2005). Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus. 15 [PubMed]

Oestreich J, Dembrow NC, George AA, Zakon HH. (2006). A "sample-and-hold" pulse-counting integrator as a mechanism for graded memory underlying sensorimotor adaptation. Neuron. 49 [PubMed]

Poirazi P, Brannon T, Mel BW. (2003). Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 37 [PubMed]

Ramirez JM, Tryba AK, Peña F. (2004). Pacemaker neurons and neuronal networks: an integrative view. Current opinion in neurobiology. 14 [PubMed]

Ricci AJ, Kennedy HJ, Crawford AC, Fettiplace R. (2005). The transduction channel filter in auditory hair cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Robinson RB, Siegelbaum SA. (2003). Hyperpolarization-activated cation currents: from molecules to physiological function. Annual review of physiology. 65 [PubMed]

Schaefer AT, Angelo K, Spors H, Margrie TW. (2006). Neuronal oscillations enhance stimulus discrimination by ensuring action potential precision. PLoS biology. 4 [PubMed]

Simoncelli EP, Olshausen BA. (2001). Natural image statistics and neural representation. Annual review of neuroscience. 24 [PubMed]

Stemmler M, Koch C. (1999). How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nature neuroscience. 2 [PubMed]

Steriade M, Timofeev I. (2003). Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron. 37 [PubMed]

Ströhmann B, Schwarz DW, Puil E. (1994). Subthreshold frequency selectivity in avian auditory thalamus. Journal of neurophysiology. 71 [PubMed]

Turin GL. (1960). An introduction to matched filters IRE Transactions On Information Theory. 6

Turrigiano G, Abbott LF, Marder E. (1994). Activity-dependent changes in the intrinsic properties of cultured neurons. Science (New York, N.Y.). 264 [PubMed]

Turrigiano GG, Nelson SB. (2000). Hebb and homeostasis in neuronal plasticity. Current opinion in neurobiology. 10 [PubMed]

Ulrich D. (2002). Dendritic resonance in rat neocortical pyramidal cells. Journal of neurophysiology. 87 [PubMed]

Volgushev M, Chistiakova M, Singer W. (1998). Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential. Neuroscience. 83 [PubMed]

WIESEL TN, HUBEL DH. (1963). SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. Journal of neurophysiology. 26 [PubMed]

References and models that cite this paper

Anderson WD, Galván EJ, Mauna JC, Thiels E, Barrionuevo G. (2011). Properties and functional implications of I (h) in hippocampal area CA3 interneurons. Pflugers Archiv : European journal of physiology. 462 [PubMed]

Ascoli GA, Gasparini S, Medinilla V, Migliore M. (2010). Local control of postinhibitory rebound spiking in CA1 pyramidal neuron dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Ashhad S, Narayanan R. (2013). Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. The Journal of physiology. 591 [PubMed]

Basak R, Narayanan R. (2018). Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS computational biology. 14 [PubMed]

Bianchi D et al. (2022). Membrane electrical properties of mouse hippocampal CA1 pyramidal neurons during strong inputs Biophysical journal. 121 [PubMed]

Bichler EK, Cavarretta F, Jaeger D. (2021). Changes in Excitability Properties of Ventromedial Motor Thalamic Neurons in 6-OHDA Lesioned Mice. eNeuro. 8 [PubMed]

Das A, Narayanan R. (2015). Active dendrites mediate stratified gamma-range coincidence detection in hippocampal model neurons. The Journal of physiology. 593 [PubMed]

Hemond P, Migliore M, Ascoli GA, Jaffe DB. (2009). The membrane response of hippocampal CA3b pyramidal neurons near rest: Heterogeneity of passive properties and the contribution of hyperpolarization-activated currents. Neuroscience. 160 [PubMed]

Kalmbach BE et al. (2018). h-Channels Contribute to Divergent Intrinsic Membrane Properties of Supragranular Pyramidal Neurons in Human versus Mouse Cerebral Cortex. Neuron. 100 [PubMed]

Marcelin B et al. (2009). h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiology of disease. 33 [PubMed]

Mukunda CL, Narayanan R. (2017). Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. The Journal of physiology. 595 [PubMed]

Narayanan R, Johnston D. (2008). The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Sinha M, Narayanan R. (2015). HCN channels enhance spike phase coherence and regulate the phase of spikes and LFPs in the theta-frequency range. Proceedings of the National Academy of Sciences of the United States of America. 112 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.