Bezprozvanny I, Watras J, Ehrlich BE. (1991). Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 351 [PubMed]

See more from authors: Bezprozvanny I · Watras J · Ehrlich BE

References and models cited by this paper
References and models that cite this paper

Ashhad S, Narayanan R. (2013). Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. The Journal of physiology. 591 [PubMed]

Blackwell KT. (2000). Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis. Journal of computational neuroscience. 9 [PubMed]

Csercsik D, Farkas I, Hrabovszky E, Liposits Z. (2012). A simple integrative electrophysiological model of bursting GnRH neurons. Journal of computational neuroscience. 32 [PubMed]

De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E. (2009). Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. Journal of biological physics. 35 [PubMed]

De Schutter E, Smolen P. (1998). Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks.

Denizot A, Arizono M, Nägerl UV, Soula H, Berry H. (2019). Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLoS computational biology. 15 [PubMed]

Doi T, Kuroda S, Michikawa T, Kawato M. (2005). Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Dupont G, Lokenye EF, Challiss RA. (2011). A model for Ca2+ oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie. 93 [PubMed]

Fink CC et al. (2000). An image-based model of calcium waves in differentiated neuroblastoma cells. Biophysical journal. 79 [PubMed]

Friel DD. (1995). [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model. Biophysical journal. 68 [PubMed]

Hituri K, Linne ML. (2013). Comparison of models for IP3 receptor kinetics using stochastic simulations. PloS one. 8 [PubMed]

Kruse M, Vivas O, Traynor-Kaplan A, Hille B. (2016). Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]

Lavrentovich M, Hemkin S. (2008). A mathematical model of spontaneous calcium(II) oscillations in astrocytes. Journal of theoretical biology. 251 [PubMed]

Manita S, Ross WN. (2009). Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Nakano T, Doi T, Yoshimoto J, Doya K. (2010). A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS computational biology. 6 [PubMed]

Peng YY, Wang KS. (2000). A Four-Compartment Model for Ca 2+ Dynamics: An Interpretation of Ca 2+ Decay after Repetitive Firing of Intact Nerve Terminals Journal of computational neuroscience. 8 [PubMed]

Riera J, Hatanaka R, Ozaki T, Kawashima R. (2011). Modeling the spontaneous Ca2+ oscillations in astrocytes: Inconsistencies and usefulness. Journal of integrative neuroscience. 10 [PubMed]

Steuber V, Willshaw D. (2004). A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell. Journal of computational neuroscience. 17 [PubMed]

Teramae JN, Fukai T. (2005). A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Implications in Working Memory Journal of computational neuroscience. 18 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.