Abbott LF, Nelson SB. (2000). Synaptic plasticity: taming the beast. Nature neuroscience. 3 Suppl [PubMed]
Aoki T, Aoyagi T. (2007). Synchrony-induced switching behavior of spike pattern attractors created by spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Appleby PA, Elliott T. (2005). Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural computation. 17 [PubMed]
Appleby PA, Elliott T. (2006). Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural computation. 18 [PubMed]
Appleby PA, Elliott T. (2007). Multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Avella Gonzalez OJ, Mansvelder HD, van Pelt J, van Ooyen A. (2015). H-Channels Affect Frequency, Power and Amplitude Fluctuations of Neuronal Network Oscillations. Frontiers in computational neuroscience. 9 [PubMed]
Badoual M et al. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. International journal of neural systems. 16 [PubMed]
Bell M, Bartol T, Sejnowski T, Rangamani P. (2019). Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium. The Journal of general physiology. 151 [PubMed]
Bohte SM, Mozer MC. (2007). Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Brette R. (2004). Dynamics of one-dimensional spiking neuron models. Journal of mathematical biology. 48 [PubMed]
Brette R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances. Neural computation. 18 [PubMed]
Brette R. (2012). Computing with neural synchrony. PLoS computational biology. 8 [PubMed]
Brette R, Goodman DF. (2011). Vectorized algorithms for spiking neural network simulation. Neural computation. 23 [PubMed]
Brette R et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience. 23 [PubMed]
Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O. (2017). Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. eLife. 6 [PubMed]
Buchs NJ, Senn W. (2002). Spike-based synaptic plasticity and the emergence of direction selective simple cells: simulation results. Journal of computational neuroscience. 13 [PubMed]
Bugmann G, Christodoulou C, Clarkson T. (). A Spiking Neuron Model: Applications and Learning. Neural Networks. 15
Burkitt AN, Meffin H, Grayden DB. (2004). Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural computation. 16 [PubMed]
Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW. (2012). Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex. PloS one. 7 [PubMed]
Chao TC, Chen CM. (2005). Learning-induced synchronization and plasticity of a developing neural network. Journal of computational neuroscience. 19 [PubMed]
Clopath C, Pedrosa V. (2017). The role of neuromodulators in cortical plasticity. A computational perspective. Front. Synaptic Neurosci.. 8
Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W. (2008). Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS computational biology. 4 [PubMed]
Costa RP, Froemke RC, Sjöström PJ, van Rossum MC. (2015). Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning. eLife. 4 [PubMed]
Costa RP et al. (2017). Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity. Neuron. 96 [PubMed]
D'Albis T, Kempter R. (2017). A single-cell spiking model for the origin of grid-cell patterns. PLoS computational biology. 13 [PubMed]
Davison AP, Frégnac Y. (2006). Learning cross-modal spatial transformations through spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Delgado JY, Gómez-González JF, Desai NS. (2010). Pyramidal neuron conductance state gates spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]
Eguchi A, Neymotin SA, Stringer SM. (2014). Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity Frontiers in neural circuits. 8 [PubMed]
Esposito U, Giugliano M, Vasilaki E. (2014). Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity. Frontiers in computational neuroscience. 8 [PubMed]
Florian RV. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural computation. 19 [PubMed]
Gabbiani F, Cox SJ. (2010). Mathematics for Neuroscientists.
Gerstner W, Kistler WM. (2002). Mathematical formulations of Hebbian learning. Biological cybernetics. 87 [PubMed]
Gilson M, Masquelier T, Hugues E. (2011). STDP allows fast rate-modulated coding with Poisson-like spike trains. PLoS computational biology. 7 [PubMed]
Gleeson P et al. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS computational biology. 6 [PubMed]
Graupner M, Brunel N. (2007). STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS computational biology. 3 [PubMed]
Guerrero-Rivera R, Morrison A, Diesmann M, Pearce TC. (2006). Programmable logic construction kits for hyper-real-time neuronal modeling. Neural computation. 18 [PubMed]
Guyonneau R, VanRullen R, Thorpe SJ. (2005). Neurons tune to the earliest spikes through STDP. Neural computation. 17 [PubMed]
Hiratani N, Fukai T. (2017). Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37 [PubMed]
Hosaka R, Araki O, Ikeguchi T. (2008). STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural computation. 20 [PubMed]
Iannella N, Tanaka S. (2006). Synaptic efficacy cluster formation across the dendrite via STDP. Neuroscience letters. 403 [PubMed]
Izhikevich EM. (2006). Polychronization: computation with spikes. Neural computation. 18 [PubMed]
Izhikevich EM. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]
Jun JK, Jin DZ. (2007). Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity. PloS one. 2 [PubMed]
Karmarkar UR, Buonomano DV. (2002). A model of spike-timing dependent plasticity: one or two coincidence detectors? Journal of neurophysiology. 88 [PubMed]
Kim B, Hawes SL, Gillani F, Wallace LJ, Blackwell KT. (2013). Signaling pathways involved in striatal synaptic plasticity are sensitive to temporal pattern and exhibit spatial specificity. PLoS computational biology. 9 [PubMed]
Kim SS, Hermundstad AM, Romani S, Abbott LF, Jayaraman V. (2019). Generation of stable heading representations in diverse visual scenes. Nature. 576 [PubMed]
Kistler WM, De Zeeuw CI. (2003). Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum (London, England). 2 [PubMed]
Kremer Y, Léger JF, Goodman D, Brette R, Bourdieu L. (2011). Late emergence of the vibrissa direction selectivity map in the rat barrel cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Legenstein R, Maass W. (2011). Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Legenstein R, Naeger C, Maass W. (2005). What can a neuron learn with spike-timing-dependent plasticity? Neural computation. 17 [PubMed]
Legenstein R, Pecevski D, Maass W. (2008). A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS computational biology. 4 [PubMed]
Liou JY et al. (2020). A model for focal seizure onset, propagation, evolution, and progression. eLife. 9 [PubMed]
Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. (2019). Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS computational biology. 15 [PubMed]
Masquelier T. (2012). Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model. Journal of computational neuroscience. 32 [PubMed]
Masquelier T. (2018). STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons. Neuroscience. 389 [PubMed]
Masquelier T, Hugues E, Deco G, Thorpe SJ. (2009). Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]
Masquelier T, Saeed Reza. (2018). Optimal localist and distributed coding of spatiotemporal spike patterns through STDP and coincidence detection Front. Comput. Neurosci..
Masuda N, Aihara K. (2004). Self-organizing dual coding based on spike-time-dependent plasticity. Neural computation. 16 [PubMed]
Masuda N, Kori H. (2007). Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. Journal of computational neuroscience. 22 [PubMed]
Mo CH, Gu M, Koch C. (2004). A learning rule for local synaptic interactions between excitation and shunting inhibition. Neural computation. 16 [PubMed]
Morrison A, Aertsen A, Diesmann M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural computation. 19 [PubMed]
Mozafari M, Kheradpisheh SR, Masquelier T, Nowzari-Dalini A, Ganjtabesh M. (2018). First-Spike-Based Visual Categorization Using Reward-Modulated STDP IEEE Transactions on Neural Networks and Learning Systems.
Muller E, Buesing L, Schemmel J, Meier K. (2007). Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural computation. 19 [PubMed]
Muller L, Brette R, Gutkin B. (2011). Spike-timing dependent plasticity and feed-forward input oscillations produce precise and invariant spike phase-locking. Frontiers in computational neuroscience. 5 [PubMed]
Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW. (2013). Reinforcement learning of two-joint virtual arm reaching in a computer model of sensorimotor cortex. Neural computation. 25 [PubMed]
Rabinowitch I, Segev I. (2006). The interplay between homeostatic synaptic plasticity and functional dendritic compartments. Journal of neurophysiology. 96 [PubMed]
Rabinowitch I, Segev I. (2006). The endurance and selectivity of spatial patterns of long-term potentiation/depression in dendrites under homeostatic synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Richert M, Nageswaran JM, Dutt N, Krichmar JL. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers in neuroinformatics. 5 [PubMed]
Sadeh S, Clopath C, Rotter S. (2015). Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS computational biology. 11 [PubMed]
Saudargiene A, Porr B, Wörgötter F. (2004). How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural computation. 16 [PubMed]
Sboev A, Rybka R, Serenko A. (2017). On the effect of stabilizing mean firing rate of a neuron due to STDP Procedia Computer Science. 119
Schulz R, Reggia JA. (2004). Temporally asymmetric learning supports sequence processing in multi-winner self-organizing maps. Neural computation. 16 [PubMed]
Sejnowski TJ, Destexhe A. (2000). Why do we sleep? Brain research. 886 [PubMed]
Shanahan M. (2008). A spiking neuron model of cortical broadcast and competition. Consciousness and cognition. 17 [PubMed]
Shen YS, Gao H, Yao H. (2005). Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. Journal of computational neuroscience. 18 [PubMed]
Sweeney Y, Hellgren Kotaleski J, Hennig MH. (2015). A Diffusive Homeostatic Signal Maintains Neural Heterogeneity and Responsiveness in Cortical Networks. PLoS computational biology. 11 [PubMed]
Swiercz W et al. (2006). A new synaptic plasticity rule for networks of spiking neurons. IEEE transactions on neural networks. 17 [PubMed]
Tamosiunaite M, Porr B, Wörgötter F. (2007). Self-influencing synaptic plasticity: recurrent changes of synaptic weights can lead to specific functional properties. Journal of computational neuroscience. 23 [PubMed]
Toyoizumi T, Pfister JP, Aihara K, Gerstner W. (2007). Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural computation. 19 [PubMed]
Urakubo H, Honda M, Froemke RC, Kuroda S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Vasilaki E, Giugliano M. (2014). Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PloS one. 9 [PubMed]
Veredas FJ, Vico FJ, Alonso JM. (2005). Factors determining the precision of the correlated firing generated by a monosynaptic connection in the cat visual pathway. The Journal of physiology. 567 [PubMed]
Watanabe S, Hoffman DA, Migliore M, Johnston D. (2002). Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]
Wenning G, Obermayer K. (2003). Activity driven adaptive stochastic resonance. Physical review letters. 90 [PubMed]
Wilmes KA, Sprekeler H, Schreiber S. (2016). Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS computational biology. 12 [PubMed]
Wörgötter F, Porr B. (2005). Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural computation. 17 [PubMed]
Yoshioka M. (2002). Spike-timing-dependent learning rule to encode spatiotemporal patterns in a network of spiking neurons. Physical review. E, Statistical, nonlinear, and soft matter physics. 65 [PubMed]
Yu X, Shouval HZ, Knierim JJ. (2008). A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields. Journal of neurophysiology. 100 [PubMed]