Apps R, Hawkes R. (2009). Cerebellar cortical organization: a one-map hypothesis. Nature reviews. Neuroscience. 10 [PubMed]
Armano S, Rossi P, Taglietti V, D'Angelo E. (2000). Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]
Artola A, Bröcher S, Singer W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature. 347 [PubMed]
Banerjee A et al. (2009). Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex. Cerebral cortex (New York, N.Y. : 1991). 19 [PubMed]
Bekkers JM, Richerson GB, Stevens CF. (1990). Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proceedings of the National Academy of Sciences of the United States of America. 87 [PubMed]
Bell CC, Han VZ, Sugawara Y, Grant K. (1997). Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature. 387 [PubMed]
Bender VA, Bender KJ, Brasier DJ, Feldman DE. (2006). Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Bentivoglio M et al. (2019). The Original Histological Slides of Camillo Golgi and His Discoveries on Neuronal Structure. Frontiers in neuroanatomy. 13 [PubMed]
Bi GQ, Poo MM. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]
Bi GQ, Wang HX. (2002). Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiology & behavior. 77 [PubMed]
Caporale N, Dan Y. (2008). Spike timing-dependent plasticity: a Hebbian learning rule. Annual review of neuroscience. 31 [PubMed]
Casali S, Tognolina M, Gandolfi D, Mapelli J, D'Angelo E. (2020). Cellular-resolution mapping uncovers spatial adaptive filtering at the rat cerebellum input stage. Communications biology. 3 [PubMed]
Cesana E et al. (2013). Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
Costa RP, Froemke RC, Sjöström PJ, van Rossum MC. (2015). Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning. eLife. 4 [PubMed]
Courtemanche R, Lamarre Y. (2005). Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. Journal of neurophysiology. 93 [PubMed]
Courtemanche R, Robinson JC, Aponte DI. (2013). Linking oscillations in cerebellar circuits. Frontiers in neural circuits. 7 [PubMed]
D'Angelo E. (2014). The organization of plasticity in the cerebellar cortex: from synapses to control. Progress in brain research. 210 [PubMed]
D'Angelo E. (2019). The cerebellum gets social. Science (New York, N.Y.). 363 [PubMed]
D'Angelo E, De Zeeuw CI. (2009). Timing and plasticity in the cerebellum: focus on the granular layer. Trends in neurosciences. 32 [PubMed]
D'Angelo E, Rossi P, Armano S, Taglietti V. (1999). Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. Journal of neurophysiology. 81 [PubMed]
D'Angelo E, Rossi P, Taglietti V. (1994). Voltage-dependent kinetics of N-methyl-D-aspartate synaptic currents in rat cerebellar granule cells. The European journal of neuroscience. 6 [PubMed]
D'Errico A, Prestori F, D'Angelo E. (2009). Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. The Journal of physiology. 587 [PubMed]
Dan Y, Poo MM. (2004). Spike timing-dependent plasticity of neural circuits. Neuron. 44 [PubMed]
Dean P, Porrill J, Ekerot CF, Jörntell H. (2010). The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nature reviews. Neuroscience. 11 [PubMed]
Debanne D, Gähwiler BH, Thompson SM. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. The Journal of physiology. 507 ( Pt 1) [PubMed]
Dieudonné S, Dumoulin A. (2000). Serotonin-driven long-range inhibitory connections in the cerebellar cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]
Dugué GP et al. (2009). Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron. 61 [PubMed]
Dugué GP, Dumoulin A, Triller A, Dieudonné S. (2005). Target-dependent use of co-released inhibitory transmitters at central synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Egger V, Feldmeyer D, Sakmann B. (1999). Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nature neuroscience. 2 [PubMed]
Feldman DE. (2012). The spike-timing dependence of plasticity. Neuron. 75 [PubMed]
Fino E, Glowinski J, Venance L. (2005). Bidirectional activity-dependent plasticity at corticostriatal synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Fino E et al. (2010). Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity. The Journal of physiology. 588 [PubMed]
Forti L, Cesana E, Mapelli J, D'Angelo E. (2006). Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. The Journal of physiology. 574 [PubMed]
Froemke RC, Poo MM, Dan Y. (2005). Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature. 434 [PubMed]
Gall D et al. (2005). Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Galliano E, Mazzarello P, D'Angelo E. (2010). Discovery and rediscoveries of Golgi cells. The Journal of physiology. 588 [PubMed]
Gao Z, van Beugen BJ, De Zeeuw CI. (2012). Distributed synergistic plasticity and cerebellar learning. Nature reviews. Neuroscience. 13 [PubMed]
Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]
Han VZ, Grant K, Bell CC. (2000). Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron. 27 [PubMed]
Hansel C, Linden DJ, D'Angelo E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature neuroscience. 4 [PubMed]
Hartmann MJ, Bower JM. (1998). Oscillatory activity in the cerebellar hemispheres of unrestrained rats. Journal of neurophysiology. 80 [PubMed]
Higley MJ, Contreras D. (2006). Balanced excitation and inhibition determine spike timing during frequency adaptation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Hull C, Regehr WG. (2012). Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron. 73 [PubMed]
Ito M. (2008). Control of mental activities by internal models in the cerebellum. Nature reviews. Neuroscience. 9 [PubMed]
Kampa BM, Clements J, Jonas P, Stuart GJ. (2004). Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. The Journal of physiology. 556 [PubMed]
Kampa BM, Letzkus JJ, Stuart GJ. (2006). Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity. The Journal of physiology. 574 [PubMed]
Kampa BM, Letzkus JJ, Stuart GJ. (2007). Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity. Trends in neurosciences. 30 [PubMed]
Kanichay RT, Silver RA. (2008). Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Karmarkar UR, Buonomano DV. (2002). A model of spike-timing dependent plasticity: one or two coincidence detectors? Journal of neurophysiology. 88 [PubMed]
Linden DJ. (2001). The expression of cerebellar LTD in culture is not associated with changes in AMPA-receptor kinetics, agonist affinity, or unitary conductance. Proceedings of the National Academy of Sciences of the United States of America. 98 [PubMed]
Lisman J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences of the United States of America. 86 [PubMed]
Loebel A et al. (2009). Multiquantal release underlies the distribution of synaptic efficacies in the neocortex. Frontiers in computational neuroscience. 3 [PubMed]
Magee JC, Grienberger C. (2020). Synaptic Plasticity Forms and Functions. Annual review of neuroscience. 43 [PubMed]
Malenka RC, Bear MF. (2004). LTP and LTD: an embarrassment of riches. Neuron. 44 [PubMed]
Malinow R, Tsien RW. (1990). Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature. 346 [PubMed]
Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA. (1993). Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. Journal of neurophysiology. 70 [PubMed]
Markram H, Lübke J, Frotscher M, Sakmann B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (New York, N.Y.). 275 [PubMed]
Marr D. (1969). A theory of cerebellar cortex. The Journal of physiology. 202 [PubMed]
Masoli S, Ottaviani A, Casali S, D'Angelo E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS computational biology. 16 [PubMed]
Neher E. (1992). Correction for liquid junction potentials in patch clamp experiments. Methods in enzymology. 207 [PubMed]
Nieus T et al. (2006). LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. Journal of neurophysiology. 95 [PubMed]
Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature. 408 [PubMed]
Paille V et al. (2013). GABAergic circuits control spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
Pawlak V, Kerr JN. (2008). Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Pellerin JP, Lamarre Y. (1997). Local field potential oscillations in primate cerebellar cortex during voluntary movement. Journal of neurophysiology. 78 [PubMed]
Pouille F, Scanziani M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science (New York, N.Y.). 293 [PubMed]
Rudolph S, Hull C, Regehr WG. (2015). Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]
Saviane C, Silver RA. (2006). Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature. 439 [PubMed]
Schulz PE, Cook EP, Johnston D. (1994). Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 14 [PubMed]
Sgritta M, Locatelli F, Soda T, Prestori F, D'Angelo EU. (2017). Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37 [PubMed]
Shen W, Flajolet M, Greengard P, Surmeier DJ. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science (New York, N.Y.). 321 [PubMed]
Shouval HZ, Bear MF, Cooper LN. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]
Sillitoe RV, Chung SH, Fritschy JM, Hoy M, Hawkes R. (2008). Golgi cell dendrites are restricted by Purkinje cell stripe boundaries in the adult mouse cerebellar cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Simat M, Parpan F, Fritschy JM. (2007). Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. The Journal of comparative neurology. 500 [PubMed]
Sjöström PJ, Häusser M. (2006). A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron. 51 [PubMed]
Sjöström PJ, Nelson SB. (2002). Spike timing, calcium signals and synaptic plasticity. Current opinion in neurobiology. 12 [PubMed]
Sjöström PJ, Turrigiano GG, Nelson SB. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 32 [PubMed]
Sjöström PJ, Turrigiano GG, Nelson SB. (2003). Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron. 39 [PubMed]
Sola E, Prestori F, Rossi P, Taglietti V, D'Angelo E. (2004). Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. The Journal of physiology. 557 [PubMed]
Sudhakar SK et al. (2017). Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS computational biology. 13 [PubMed]
Tabuchi S, Gilmer JI, Purba K, Person AL. (2019). Pathway-Specific Drive of Cerebellar Golgi Cells Reveals Integrative Rules of Cortical Inhibition. The Journal of neuroscience : the official journal of the Society for Neuroscience. 39 [PubMed]
Tepper JM, Wilson CJ, Koós T. (2008). Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain research reviews. 58 [PubMed]
Vervaeke K et al. (2010). Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 67 [PubMed]
Vervaeke K, Lorincz A, Nusser Z, Silver RA. (2012). Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science (New York, N.Y.). 335 [PubMed]
Volianskis A et al. (2015). Long-term potentiation and the role of N-methyl-D-aspartate receptors. Brain research. 1621 [PubMed]
Wang YT, Linden DJ. (2000). Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron. 25 [PubMed]
Wehr M, Zador AM. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature. 426 [PubMed]
Wittenberg GM, Wang SS. (2006). Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Zeilhofer HU et al. (2005). Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. The Journal of comparative neurology. 482 [PubMed]
Zhang W, Linden DJ. (2006). Long-term depression at the mossy fiber-deep cerebellar nucleus synapse. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
van Welie I, Roth A, Ho SS, Komai S, Häusser M. (2016). Conditional Spike Transmission Mediated by Electrical Coupling Ensures Millisecond Precision-Correlated Activity among Interneurons In Vivo. Neuron. 90 [PubMed]