Benda J, Maler L, Longtin A. (2010). Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. Journal of neurophysiology. 104 [PubMed]
Brette R, Gerstner W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of neurophysiology. 94 [PubMed]
Brunel N, Hakim V, Richardson MJ. (2003). Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Physical review. E, Statistical, nonlinear, and soft matter physics. 67 [PubMed]
Burkitt AN. (2006). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological cybernetics. 95 [PubMed]
Buzsáki G. (2004). Large-scale recording of neuronal ensembles. Nature neuroscience. 7 [PubMed]
Buzsáki G, Draguhn A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.). 304 [PubMed]
Casellato C et al. (2014). Adaptive robotic control driven by a versatile spiking cerebellar network. PloS one. 9 [PubMed]
Cavallari S, Panzeri S, Mazzoni A. (2014). Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers in neural circuits. 8 [PubMed]
Cerminara NL, Rawson JA. (2004). Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
Cesana E et al. (2013). Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
D'Angelo E. (2008). The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Frontiers in neuroscience. 2 [PubMed]
D'Angelo E et al. (2016). Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. Cerebellum (London, England). 15 [PubMed]
D'Angelo E et al. (2013). The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Frontiers in neural circuits. 7 [PubMed]
Destexhe A, Bal T, McCormick DA, Sejnowski TJ. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of neurophysiology. 76 [PubMed]
Doloc-Mihu A, Calabrese RL. (2011). A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity. Journal of biological physics. 37 [PubMed]
Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO. (2008). PyNEST: A Convenient Interface to the NEST Simulator. Frontiers in neuroinformatics. 2 [PubMed]
Fitzhugh R. (1961). Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophysical journal. 1 [PubMed]
Forti L, Cesana E, Mapelli J, D'Angelo E. (2006). Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. The Journal of physiology. 574 [PubMed]
Gandolfi D, Lombardo P, Mapelli J, Solinas S, D'Angelo E. (2013). ?-Frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale. Frontiers in neural circuits. 7 [PubMed]
Geminiani A, Casellato C, Antonietti A, D'Angelo E, Pedrocchi A. (2018). A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. International journal of neural systems. 28 [PubMed]
Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]
Gerstner W, Naud R. (2009). Neuroscience. How good are neuron models? Science (New York, N.Y.). 326 [PubMed]
Guckenheimer J, Gueron S, Harris-Warrick RM. (1993). Mapping the dynamics of a bursting neuron. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 341 [PubMed]
Hanuschkin A, Kunkel S, Helias M, Morrison A, Diesmann M. (2010). A general and efficient method for incorporating precise spike times in globally time-driven simulations. Frontiers in neuroinformatics. 4 [PubMed]
Hertäg L, Hass J, Golovko T, Durstewitz D. (2012). An Approximation to the Adaptive Exponential Integrate-and-Fire Neuron Model Allows Fast and Predictive Fitting to Physiological Data. Frontiers in computational neuroscience. 6 [PubMed]
Herz AV, Gollisch T, Machens CK, Jaeger D. (2006). Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science (New York, N.Y.). 314 [PubMed]
Hill AA, Lu J, Masino MA, Olsen OH, Calabrese RL. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of computational neuroscience. 10 [PubMed]
Hindmarsh JL, Rose RM. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London. Series B, Biological sciences. 221 [PubMed]
Hutcheon B, Yarom Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in neurosciences. 23 [PubMed]
Izhikevich EM. (2003). Simple model of spiking neurons. IEEE transactions on neural networks. 14 [PubMed]
Izhikevich EM. (2004). Which model to use for cortical spiking neurons? IEEE transactions on neural networks. 15 [PubMed]
Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]
Jordan J et al. (2018). Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in neuroinformatics. 12 [PubMed]
Marasco A, Limongiello A, Migliore M. (2012). Fast and accurate low-dimensional reduction of biophysically detailed neuron models. Scientific reports. 2 [PubMed]
Markram H. (2013). Seven challenges for neuroscience. Functional neurology. 28 [PubMed]
Markram H et al. (2015). Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 163 [PubMed]
Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]
Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]
Migliore M, Novara G, Tegolo D. (2008). Single neuron binding properties and the magical number 7. Hippocampus. 18 [PubMed]
Mihalaş S, Niebur E. (2009). A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural computation. 21 [PubMed]
Pozzorini C et al. (2015). Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models. PLoS computational biology. 11 [PubMed]
RALL W. (1962). Electrophysiology of a dendritic neuron model. Biophysical journal. 2 [PubMed]
Richardson MJ, Brunel N, Hakim V. (2003). From subthreshold to firing-rate resonance. Journal of neurophysiology. 89 [PubMed]
Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]
Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]
Teeter C et al. (2018). Generalized leaky integrate-and-fire models classify multiple neuron types. Nature communications. 9 [PubMed]
Tiesinga P, Bakker R, Hill S, Bjaalie JG. (2015). Feeding the human brain model. Current opinion in neurobiology. 32 [PubMed]
Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC. (2014). NeuroElectro: a window to the world's neuron electrophysiology data. Frontiers in neuroinformatics. 8 [PubMed]
Venkadesh S et al. (2018). Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types. Frontiers in neuroinformatics. 12 [PubMed]
Geminiani A, Casellato C, D'Angelo E, Pedrocchi A. (2019). Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models. Frontiers in computational neuroscience. 13 [PubMed]
Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]
Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. (2019). Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Frontiers in computational neuroscience. 13 [PubMed]
Marasco A et al. (2023). An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons. Bulletin of mathematical biology. 85 [PubMed]
Masoli S, Ottaviani A, Casali S, D'Angelo E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS computational biology. 16 [PubMed]
Aizenman CD, Linden DJ. (1999). Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. Journal of neurophysiology. 82 [PubMed]
Alviña K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K. (2008). Questioning the role of rebound firing in the cerebellum. Nature neuroscience. 11 [PubMed]
Buchin A, Rieubland S, Häusser M, Gutkin BS, Roth A. (2016). Inverse Stochastic Resonance in Cerebellar Purkinje Cells. PLoS computational biology. 12 [PubMed]
Casali S, Marenzi E, Medini C, Casellato C, D'Angelo E. (2019). Reconstruction and Simulation of a Scaffold Model of the Cerebellar Network. Frontiers in neuroinformatics. 13 [PubMed]
Cavallari S, Panzeri S, Mazzoni A. (2014). Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers in neural circuits. 8 [PubMed]
Choi S et al. (2010). Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice. The Journal of physiology. 588 [PubMed]
Courtemanche R, Robinson JC, Aponte DI. (2013). Linking oscillations in cerebellar circuits. Frontiers in neural circuits. 7 [PubMed]
D'Angelo E et al. (2016). Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue. Frontiers in cellular neuroscience. 10 [PubMed]
D'Angelo E, Casali S. (2012). Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Frontiers in neural circuits. 6 [PubMed]
D'Angelo E, De Filippi G, Rossi P, Taglietti V. (1998). Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. Journal of neurophysiology. 80 [PubMed]
D'Angelo E et al. (2016). Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. Cerebellum (London, England). 15 [PubMed]
D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]
D'Angelo E et al. (2013). The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Frontiers in neural circuits. 7 [PubMed]
De Gruijl JR, Bazzigaluppi P, de Jeu MT, De Zeeuw CI. (2012). Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLoS computational biology. 8 [PubMed]
De Schutter E, Steuber V. (2009). Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience. 162 [PubMed]
De Zeeuw CI et al. (2003). Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
De Zeeuw CI et al. (2011). Spatiotemporal firing patterns in the cerebellum. Nature reviews. Neuroscience. 12 [PubMed]
Forti L, Cesana E, Mapelli J, D'Angelo E. (2006). Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. The Journal of physiology. 574 [PubMed]
Galliano E et al. (2013). Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Cell reports. 3 [PubMed]
Gandolfi D, Lombardo P, Mapelli J, Solinas S, D'Angelo E. (2013). ?-Frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale. Frontiers in neural circuits. 7 [PubMed]
Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]
Grasselli G et al. (2016). Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells. Cell reports. 14 [PubMed]
Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI. (2010). Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proceedings of the National Academy of Sciences of the United States of America. 107 [PubMed]
Houston CM et al. (2017). Exploring the significance of morphological diversity for cerebellar granule cell excitability. Scientific reports. 7 [PubMed]
Hoxha E, Boda E, Montarolo F, Parolisi R, Tempia F. (2012). Excitability and synaptic alterations in the cerebellum of APP/PS1 mice. PloS one. 7 [PubMed]
Ito M, Yamaguchi K, Nagao S, Yamazaki T. (2014). Long-term depression as a model of cerebellar plasticity. Progress in brain research. 210 [PubMed]
Izhikevich EM. (2003). Simple model of spiking neurons. IEEE transactions on neural networks. 14 [PubMed]
Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]
Lennon W, Hecht-Nielsen R, Yamazaki T. (2014). A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing. Frontiers in computational neuroscience. 8 [PubMed]
Llinás RR. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science (New York, N.Y.). 242 [PubMed]
Loewenstein Y et al. (2005). Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nature neuroscience. 8 [PubMed]
Long MA, Deans MR, Paul DL, Connors BW. (2002). Rhythmicity without synchrony in the electrically uncoupled inferior olive. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Marasco A, Limongiello A, Migliore M. (2012). Fast and accurate low-dimensional reduction of biophysically detailed neuron models. Scientific reports. 2 [PubMed]
Maruta J, Hensbroek RA, Simpson JI. (2007). Intraburst and interburst signaling by climbing fibers. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]
Masoli S et al. (2017). Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells. Frontiers in cellular neuroscience. 11 [PubMed]
Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]
Mathy A et al. (2009). Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron. 62 [PubMed]
McKay BE, Turner RW. (2005). Physiological and morphological development of the rat cerebellar Purkinje cell. The Journal of physiology. 567 [PubMed]
Mihalaş S, Niebur E. (2009). A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural computation. 21 [PubMed]
Molineux ML et al. (2006). Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proceedings of the National Academy of Sciences of the United States of America. 103 [PubMed]
Rokni D, Tal Z, Byk H, Yarom Y. (2009). Regularity, variability and bi-stability in the activity of cerebellar purkinje cells. Frontiers in cellular neuroscience. 3 [PubMed]
Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]
Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]
Spanne A, Geborek P, Bengtsson F, Jörntell H. (2014). Simulating spinal border cells and cerebellar granule cells under locomotion--a case study of spinocerebellar information processing. PloS one. 9 [PubMed]
Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D. (2011). Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. Journal of computational neuroscience. 30 [PubMed]
Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC. (2014). NeuroElectro: a window to the world's neuron electrophysiology data. Frontiers in neuroinformatics. 8 [PubMed]
Uusisaari M, Knöpfel T. (2011). Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum (London, England). 10 [PubMed]
Uusisaari M, Obata K, Knöpfel T. (2007). Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Journal of neurophysiology. 97 [PubMed]
Van Der Giessen RS et al. (2008). Role of olivary electrical coupling in cerebellar motor learning. Neuron. 58 [PubMed]
Zhou H et al. (2014). Cerebellar modules operate at different frequencies. eLife. 3 [PubMed]
Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. (2019). Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Frontiers in computational neuroscience. 13 [PubMed]
Marasco A et al. (2023). An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons. Bulletin of mathematical biology. 85 [PubMed]
Best AR, Regehr WG. (2009). Inhibitory regulation of electrically coupled neurons in the inferior olive is mediated by asynchronous release of GABA. Neuron. 62 [PubMed]
Casali S, Marenzi E, Medini C, Casellato C, D'Angelo E. (2019). Reconstruction and Simulation of a Scaffold Model of the Cerebellar Network. Frontiers in neuroinformatics. 13 [PubMed]
Casellato C et al. (2014). Adaptive robotic control driven by a versatile spiking cerebellar network. PloS one. 9 [PubMed]
Cavallari S, Panzeri S, Mazzoni A. (2014). Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers in neural circuits. 8 [PubMed]
Cerminara NL, Rawson JA. (2004). Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
D'Angelo E. (2014). The organization of plasticity in the cerebellar cortex: from synapses to control. Progress in brain research. 210 [PubMed]
D'Angelo E et al. (2016). Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue. Frontiers in cellular neuroscience. 10 [PubMed]
D'Angelo E, Casali S. (2012). Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Frontiers in neural circuits. 6 [PubMed]
D'Angelo E et al. (2013). The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Frontiers in neural circuits. 7 [PubMed]
Davie JT, Clark BA, Häusser M. (2008). The origin of the complex spike in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
De Zeeuw CI et al. (2011). Spatiotemporal firing patterns in the cerebellum. Nature reviews. Neuroscience. 12 [PubMed]
Dean P, Porrill J. (2011). Evaluating the adaptive-filter model of the cerebellum. The Journal of physiology. 589 [PubMed]
Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PloS one. 6 [PubMed]
Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO. (2008). PyNEST: A Convenient Interface to the NEST Simulator. Frontiers in neuroinformatics. 2 [PubMed]
Feng SS, Lin R, Gauck V, Jaeger D. (2013). Gain control of synaptic response function in cerebellar nuclear neurons by a calcium-activated potassium conductance. Cerebellum (London, England). 12 [PubMed]
Gandolfi D, Lombardo P, Mapelli J, Solinas S, D'Angelo E. (2013). ?-Frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale. Frontiers in neural circuits. 7 [PubMed]
Gao Z, van Beugen BJ, De Zeeuw CI. (2012). Distributed synergistic plasticity and cerebellar learning. Nature reviews. Neuroscience. 13 [PubMed]
Geminiani A, Casellato C, Antonietti A, D'Angelo E, Pedrocchi A. (2018). A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. International journal of neural systems. 28 [PubMed]
Geminiani A, Casellato C, D'Angelo E, Pedrocchi A. (2019). Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models. Frontiers in computational neuroscience. 13 [PubMed]
Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]
Hahne J et al. (2015). A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations. Frontiers in neuroinformatics. 9 [PubMed]
Hansel C, Linden DJ, D'Angelo E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature neuroscience. 4 [PubMed]
He Q et al. (2015). Interneuron- and GABA(A) receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells. Nature communications. 6 [PubMed]
Heck DH, De Zeeuw CI, Jaeger D, Khodakhah K, Person AL. (2013). The neuronal code(s) of the cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
Heiney SA, Kim J, Augustine GJ, Medina JF. (2014). Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]
Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. (2015). Encoding of action by the Purkinje cells of the cerebellum. Nature. 526 [PubMed]
Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI. (2010). Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proceedings of the National Academy of Sciences of the United States of America. 107 [PubMed]
Jirenhed DA, Bengtsson F, Hesslow G. (2007). Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Jörntell H, Bengtsson F, Schonewille M, De Zeeuw CI. (2010). Cerebellar molecular layer interneurons - computational properties and roles in learning. Trends in neurosciences. 33 [PubMed]
Kanichay RT, Silver RA. (2008). Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Latorre R, Aguirre C, Rabinovich MI, Varona P. (2013). Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns. Frontiers in neural circuits. 7 [PubMed]
Lein ES et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature. 445 [PubMed]
Leznik E, Llinás R. (2005). Role of gap junctions in synchronized neuronal oscillations in the inferior olive. Journal of neurophysiology. 94 [PubMed]
Llinás RR. (2013). The olivo-cerebellar system: a key to understanding the functional significance of intrinsic oscillatory brain properties. Frontiers in neural circuits. 7 [PubMed]
Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. (2019). Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS computational biology. 15 [PubMed]
Maex R, De Schutter E. (1998). Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. Journal of neurophysiology. 80 [PubMed]
Mapelli L, Rossi P, Nieus T, D'Angelo E. (2009). Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. Journal of neurophysiology. 101 [PubMed]
Marr D. (1969). A theory of cerebellar cortex. The Journal of physiology. 202 [PubMed]
Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]
Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]
Morissette J, Bower JM. (1996). Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Experimental brain research. 109 [PubMed]
Powell K, Mathy A, Duguid I, Häusser M. (2015). Synaptic representation of locomotion in single cerebellar granule cells. eLife. 4 [PubMed]
Prestori F et al. (2008). Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Pugh JR, Raman IM. (2006). Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron. 51 [PubMed]
Rancz EA et al. (2007). High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature. 450 [PubMed]
Ruigrok TJ. (2011). Ins and outs of cerebellar modules. Cerebellum (London, England). 10 [PubMed]
Schonewille M et al. (2010). Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron. 67 [PubMed]
Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]
Ten Brinke MM et al. (2017). Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. eLife. 6 [PubMed]
Uusisaari M, De Schutter E. (2011). The mysterious microcircuitry of the cerebellar nuclei. The Journal of physiology. 589 [PubMed]
Uusisaari M, Knöpfel T. (2008). GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Neuroscience. 156 [PubMed]
Voogd J, Glickstein M. (1998). The anatomy of the cerebellum. Trends in cognitive sciences. 2 [PubMed]
Yamazaki T, Igarashi J. (2013). Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural networks : the official journal of the International Neural Network Society. 47 [PubMed]
Zheng N, Raman IM. (2010). Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum (London, England). 9 [PubMed]
Zhou H et al. (2014). Cerebellar modules operate at different frequencies. eLife. 3 [PubMed]