Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]
Beierlein M, Connors BW, Landisman CE. (2000). Electrical synapses between thalamic reticular neurons. 308.13 Soc Neurosci Abstr. 26
Beierlein M, Gibson JR, Connors BW. (2000). A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature neuroscience. 3 [PubMed]
Bragin A et al. (1995). Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]
Buhl EH, Halasy K, Somogyi P. (1994). Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature. 368 [PubMed]
Buhl EH et al. (1994). Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. Journal of neurophysiology. 71 [PubMed]
Buhl EH, Szilágyi T, Halasy K, Somogyi P. (1996). Physiological properties of anatomically identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro. Hippocampus. 6 [PubMed]
Buhl EH, Traub RD, Whittington MA, Towers SK, Lebeau_fen . (2000). Fast and ultrafast oscillations in the hippocampus in vitro.69.12 Soc Neurosci Abstr. 26
Buzsáki G, Chrobak JJ. (1995). Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Current opinion in neurobiology. 5 [PubMed]
Chow CC, Kopell N. (2000). Dynamics of spiking neurons with electrical coupling. Neural computation. 12 [PubMed]
Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. (1995). Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 378 [PubMed]
Cohen AH, Holmes PJ, Rand RH. (1982). The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. Journal of mathematical biology. 13 [PubMed]
Ermentrout GB, Kopell N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America. 95 [PubMed]
Fuchs EC et al. (2001). Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation. Proceedings of the National Academy of Sciences of the United States of America. 98 [PubMed]
Fukuda T, Kosaka T. (2000). Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]
Galarreta M, Hestrin S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature. 402 [PubMed]
Galarreta M, Hestrin S. (2001). Spike transmission and synchrony detection in networks of GABAergic interneurons. Science (New York, N.Y.). 292 [PubMed]
Gibson JR, Beierlein M, Connors BW. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature. 402 [PubMed]
Hájos N, Mody I. (1997). Synaptic communication among hippocampal interneurons: properties of spontaneous IPSCs in morphologically identified cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Kopell N. (1988). Toward a theory of modelling central pattern generators Neural Control Of Rhythmic Movements In Vertebrates.
Kosaka T. (1983). Gap junctions between non-pyramidal cell dendrites in the rat hippocampus (CA1 and CA3 regions). Brain research. 271 [PubMed]
Lytton WW, Sejnowski TJ. (1991). Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. Journal of neurophysiology. 66 [PubMed]
Penttonen M, Kamondi A, Acsády L, Buzsáki G. (1998). Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. The European journal of neuroscience. 10 [PubMed]
Schmitz D et al. (2001). Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron. 31 [PubMed]
Sik A, Penttonen M, Ylinen A, Buzsáki G. (1995). Hippocampal CA1 interneurons: an in vivo intracellular labeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]
Singer W, Gray CM. (1995). Visual feature integration and the temporal correlation hypothesis. Annual review of neuroscience. 18 [PubMed]
Soltesz I, Deschênes M. (1993). Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. Journal of neurophysiology. 70 [PubMed]
Tamás G, Buhl EH, Lörincz A, Somogyi P. (2000). Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature neuroscience. 3 [PubMed]
Traub RD. (1995). Model of synchronized population bursts in electrically coupled interneurons containing active dendritic conductances. Journal of computational neuroscience. 2 [PubMed]
Traub RD, Bibbig A. (2000). A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]
Traub RD et al. (2000). A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. The European journal of neuroscience. 12 [PubMed]
Traub RD, Bibbig R, Piechotta A, Draguhn R, Schmitz D. (2001). Synaptic and nonsynaptic contributions to giant ipsps and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro. Journal of neurophysiology. 85 [PubMed]
Traub RD, Miles R. (1995). Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell. Journal of computational neuroscience. 2 [PubMed]
Traub RD, Schmitz D, Jefferys JG, Draguhn A. (1999). High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience. 92 [PubMed]
Traub RD, Whittington MA, Buhl EH, Jefferys JG, Faulkner HJ. (1999). On the mechanism of the gamma --> beta frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]
Traub RD, Whittington MA, Colling SB, Buzsáki G, Jefferys JG. (1996). Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. The Journal of physiology. 493 ( Pt 2) [PubMed]
Traub RD, Whittington MA, Stanford IM, Jefferys JG. (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature. 383 [PubMed]
Venance L et al. (2000). Connexin expression in electrically coupled postnatal rat brain neurons. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]
Wang XJ, Buzsáki G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]
White JA, Chow CC, Ritt J, Soto-Treviño C, Kopell N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of computational neuroscience. 5 [PubMed]
Whittington MA, Stanford IM, Colling SB, Jefferys JG, Traub RD. (1997). Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice. The Journal of physiology. 502 ( Pt 3) [PubMed]
Whittington MA, Traub RD, Faulkner HJ, Jefferys JG, Chettiar K. (1998). Morphine disrupts long-range synchrony of gamma oscillations in hippocampal slices. Proceedings of the National Academy of Sciences of the United States of America. 95 [PubMed]
Whittington MA, Traub RD, Jefferys JG. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. 373 [PubMed]
Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH. (2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. International journal of psychophysiology : official journal of the International Organization of Psychophysiology. 38 [PubMed]
Zhang SJ, Huguenard JR, Prince DA. (1997). GABAA receptor-mediated Cl- currents in rat thalamic reticular and relay neurons. Journal of neurophysiology. 78 [PubMed]
von Krosigk M, Bal T, McCormick DA. (1993). Cellular mechanisms of a synchronized oscillation in the thalamus. Science (New York, N.Y.). 261 [PubMed]
Bartos M et al. (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]
Bathellier B, Lagier S, Faure P, Lledo PM. (2006). Circuit properties generating gamma oscillations in a network model of the olfactory bulb. Journal of neurophysiology. 95 [PubMed]
Börgers C, Kopell N. (2005). Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural computation. 17 [PubMed]
Calì C et al. (2008). Inferring connection proximity in networks of electrically coupled cells by subthreshold frequency response analysis. Journal of computational neuroscience. 24 [PubMed]
Chartove JA, McCarthy MM, Pittman-Polletta BR, Kopell NJ. (2020). A biophysical model of striatal microcircuits suggests gamma and beta oscillations interleaved at delta/theta frequencies mediate periodicity in motor control PLOS Computational Biology. 16
Chiang CC, Shivacharan RS, Wei X, Gonzalez-Reyes LE, Durand DM. (2019). Slow periodic activity in the longitudinal hippocampal slice can self-propagate non-synaptically by a mechanism consistent with ephaptic coupling. The Journal of physiology. 597 [PubMed]
Damodaran S, Evans RC, Blackwell KT. (2014). Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. Journal of neurophysiology. 111 [PubMed]
Gottschalk A, Haney P. (2003). Computational aspects of anesthetic action in simple neural models. Anesthesiology. 98 [PubMed]
Hendrickson EB, Edgerton JR, Jaeger D. (2011). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of computational neuroscience. 30 [PubMed]
Hjorth J, Blackwell KT, Kotaleski JH. (2009). Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]
Humphries MD, Wood R, Gurney K. (2009). Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit. Neural networks : the official journal of the International Neural Network Society. 22 [PubMed]
Humphries MD, Wood R, Gurney K. (2010). Reconstructing the three-dimensional GABAergic microcircuit of the striatum. PLoS computational biology. 6 [PubMed]
Kopell N, Borgers C, Pervouchine D, Tort AB, Malerba P. (2010). Gamma and theta rhythms in biophysical models of hippocampal circuits Hippocampal Microcircuits: A Computational Modeller`s Resource Book. Ch. 15..
Li G, Henriquez CS, Fröhlich F. (2017). Unified Thalamic Model Generates Multiple Distinct Oscillations with State-dependent Entrainment by Stimulation PLOS Computational Biology. 13(10)
Maex R, De Schutter E. (2003). Resonant synchronization in heterogeneous networks of inhibitory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Pernelle G, Nicola W, Clopath C. (2018). Gap junction plasticity as a mechanism to regulate network-wide oscillations. PLoS computational biology. 14 [PubMed]
Pfeuty B, Mato G, Golomb D, Hansel D. (2003). Electrical synapses and synchrony: the role of intrinsic currents. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Pfeuty B, Mato G, Golomb D, Hansel D. (2005). The combined effects of inhibitory and electrical synapses in synchrony. Neural computation. 17 [PubMed]
Strüber M, Sauer JF, Jonas P, Bartos M. (2017). Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus. Nature communications. 8 [PubMed]
Szoboszlay M et al. (2016). Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells. Neuron. 90 [PubMed]
Talathi SS, Hwang DU, Ditto WL. (2008). Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. Journal of computational neuroscience. 25 [PubMed]
Traub RD et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of neurophysiology. 93 [PubMed]
Traub RD, Contreras D, Whittington MA. (2005). Combined experimental/simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 22 [PubMed]
Traub RD et al. (2003). Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]
Traub RD et al. (2005). Transient depression of excitatory synapses on interneurons contributes to epileptiform bursts during gamma oscillations in the mouse hippocampal slice. Journal of neurophysiology. 94 [PubMed]
Truccolo W, Ho EC. (2016). Interaction between Synaptic Inhibition and Glial-Potassium Dynamics leads to Diverse Seizure Transition Modes in Biophysical Models of Human Focal Seizures J Comput Neurosci.
Vervaeke K et al. (2010). Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 67 [PubMed]
Vida I, Bartos M, Jonas P. (2006). Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron. 49 [PubMed]