De Young GW, Keizer J. (1992). A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proceedings of the National Academy of Sciences of the United States of America. 89 [PubMed]

See more from authors: De Young GW · Keizer J

References and models cited by this paper
References and models that cite this paper

Ashhad S, Narayanan R. (2013). Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. The Journal of physiology. 591 [PubMed]

Blackwell KT. (2000). Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis. Journal of computational neuroscience. 9 [PubMed]

De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E. (2009). Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. Journal of biological physics. 35 [PubMed]

De Schutter E, Smolen P. (1998). Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks.

Denizot A, Arizono M, Nägerl UV, Soula H, Berry H. (2019). Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLoS computational biology. 15 [PubMed]

Fall CP, Rinzel J. (2006). An intracellular Ca2+ subsystem as a biologically plausible source of intrinsic conditional bistability in a network model of working memory. Journal of computational neuroscience. 20 [PubMed]

Fink CC et al. (2000). An image-based model of calcium waves in differentiated neuroblastoma cells. Biophysical journal. 79 [PubMed]

Friel DD. (1995). [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model. Biophysical journal. 68 [PubMed]

Gabbiani F, Cox SJ. (2010). Mathematics for Neuroscientists.

Handy G, Taheri M, White JA, Borisyuk A. (2017). Mathematical investigation of IP3-dependent calcium dynamics in astrocytes. Journal of computational neuroscience. 42 [PubMed]

Hituri K, Linne ML. (2013). Comparison of models for IP3 receptor kinetics using stochastic simulations. PloS one. 8 [PubMed]

Inoue M, lin H, Imanaga I, Ogawa K, Warashina A. (2004). InsP3 receptor type 2 and oscillatory and monophasic Ca2+ transients in rat adrenal chromaffin cells. Cell calcium. 35 [PubMed]

Manninen T, Havela R, Linne M-L. (2017). Reproducibility and comparability of computational models for astrocyte calcium excitability Front. Neuroinform..

Manninen T, Saudargiene A, Linne ML. (2020). Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex. PLoS computational biology. 16 [PubMed]

Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton WW. (2016). Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex. Frontiers in pharmacology. 7 [PubMed]

Neymotin SA et al. (2016). Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience. 316 [PubMed]

Neymotin SA et al. (2015). Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural computation. 27 [PubMed]

Nguyen V, Mathias R, Smith GD. (2005). A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels. Bulletin of mathematical biology. 67 [PubMed]

Riera J, Hatanaka R, Ozaki T, Kawashima R. (2011). Modeling the spontaneous Ca2+ oscillations in astrocytes: Inconsistencies and usefulness. Journal of integrative neuroscience. 10 [PubMed]

Sterratt DC, Graham B, Gillies A, Willshaw D. (2011). Principles of Computational Modelling in Neuroscience, Cambridge University Press.

Teramae JN, Fukai T. (2005). A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Implications in Working Memory Journal of computational neuroscience. 18 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.