Ashhad S, Narayanan R. (2013). Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. The Journal of physiology. 591 [PubMed]
Blackwell KT. (2000). Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis. Journal of computational neuroscience. 9 [PubMed]
De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E. (2009). Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. Journal of biological physics. 35 [PubMed]
De Schutter E, Smolen P. (1998). Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks.
Denizot A, Arizono M, Nägerl UV, Soula H, Berry H. (2019). Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLoS computational biology. 15 [PubMed]
Fall CP, Rinzel J. (2006). An intracellular Ca2+ subsystem as a biologically plausible source of intrinsic conditional bistability in a network model of working memory. Journal of computational neuroscience. 20 [PubMed]
Fink CC et al. (2000). An image-based model of calcium waves in differentiated neuroblastoma cells. Biophysical journal. 79 [PubMed]
Friel DD. (1995). [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model. Biophysical journal. 68 [PubMed]
Gabbiani F, Cox SJ. (2010). Mathematics for Neuroscientists.
Handy G, Taheri M, White JA, Borisyuk A. (2017). Mathematical investigation of IP3-dependent calcium dynamics in astrocytes. Journal of computational neuroscience. 42 [PubMed]
Hituri K, Linne ML. (2013). Comparison of models for IP3 receptor kinetics using stochastic simulations. PloS one. 8 [PubMed]
Inoue M, lin H, Imanaga I, Ogawa K, Warashina A. (2004). InsP3 receptor type 2 and oscillatory and monophasic Ca2+ transients in rat adrenal chromaffin cells. Cell calcium. 35 [PubMed]
Manninen T, Havela R, Linne M-L. (2017). Reproducibility and comparability of computational models for astrocyte calcium excitability Front. Neuroinform..
Manninen T, Saudargiene A, Linne ML. (2020). Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex. PLoS computational biology. 16 [PubMed]
Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton WW. (2016). Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex. Frontiers in pharmacology. 7 [PubMed]
Neymotin SA et al. (2016). Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience. 316 [PubMed]
Neymotin SA et al. (2015). Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural computation. 27 [PubMed]
Nguyen V, Mathias R, Smith GD. (2005). A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels. Bulletin of mathematical biology. 67 [PubMed]
Riera J, Hatanaka R, Ozaki T, Kawashima R. (2011). Modeling the spontaneous Ca2+ oscillations in astrocytes: Inconsistencies and usefulness. Journal of integrative neuroscience. 10 [PubMed]
Sterratt DC, Graham B, Gillies A, Willshaw D. (2011). Principles of Computational Modelling in Neuroscience, Cambridge University Press.
Teramae JN, Fukai T. (2005). A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Implications in Working Memory Journal of computational neuroscience. 18 [PubMed]