Principles governing the operation of synaptic inhibition in dendrites (Gidon & Segev 2012)


Gidon A, Segev I. (2012). Principles governing the operation of synaptic inhibition in dendrites. Neuron. 75 [PubMed]

See more from authors: Gidon A · Segev I

References and models cited by this paper

Antic SD, Zhou WL, Moore AR, Short SM, Ikonomu KD. (2010). The decade of the dendritic NMDA spike. Journal of neuroscience research. 88 [PubMed]

Archie KA, Mel BW. (2000). A model for intradendritic computation of binocular disparity. Nature neuroscience. 3 [PubMed]

Ascoli GA, Donohue DE, Halavi M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Berger TK, Perin R, Silberberg G, Markram H. (2009). Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex. The Journal of physiology. 587 [PubMed]

Berger TK, Silberberg G, Perin R, Markram H. (2010). Brief bursts self-inhibit and correlate the pyramidal network. PLoS biology. 8 [PubMed]

Borg-Graham LJ, Monier C, Frégnac Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature. 393 [PubMed]

Branco T, Häusser M. (2010). The single dendritic branch as a fundamental functional unit in the nervous system. Current opinion in neurobiology. 20 [PubMed]

Cardin JA et al. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 459 [PubMed]

Chen H, Lambert NA. (1997). Inhibition of dendritic calcium influx by activation of G-protein-coupled receptors in the hippocampus. Journal of neurophysiology. 78 [PubMed]

DeFelipe J. (1997). Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. Journal of chemical neuroanatomy. 14 [PubMed]

DeFelipe J, Fariñas I. (1992). The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Progress in neurobiology. 39 [PubMed]

Defelipe J, González-Albo MC, Del Río MR, Elston GN. (1999). Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. The Journal of comparative neurology. 412 [PubMed]

Douglas RJ, Martin KA. (2009). Inhibition in cortical circuits. Current biology : CB. 19 [PubMed]

Dreifuss JJ, Kelly JS, Krnjević K. (1969). Cortical inhibition and gamma-aminobutyric acid. Experimental brain research. 9 [PubMed]

Druckmann S et al. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in neuroscience. 1 [PubMed]

Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. The Journal of physiology. 568 [PubMed]

Hao J, Wang XD, Dan Y, Poo MM, Zhang XH. (2009). An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America. 106 [PubMed]

Hay E, Hill S, Schürmann F, Markram H, Segev I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS computational biology. 7 [PubMed]

Helmstaedter M, Sakmann B, Feldmeyer D. (2009). Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cerebral cortex (New York, N.Y. : 1991). 19 [PubMed]

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]

Häusser M, Mel B. (2003). Dendrites: bug or feature? Current opinion in neurobiology. 13 [PubMed]

Isaacson JS, Scanziani M. (2011). How inhibition shapes cortical activity. Neuron. 72 [PubMed]

Jadi M, Polsky A, Schiller J, Mel BW. (2012). Location-dependent effects of inhibition on local spiking in pyramidal neuron dendrites. PLoS computational biology. 8 [PubMed]

Kapfer C, Glickfeld LL, Atallah BV, Scanziani M. (2007). Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nature neuroscience. 10 [PubMed]

Kim S, Guzman SJ, Hu H, Jonas P. (2012). Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons. Nature neuroscience. 15 [PubMed]

Kisvárday ZF, Eysel UT. (1993). Functional and structural topography of horizontal inhibitory connections in cat visual cortex. The European journal of neuroscience. 5 [PubMed]

Klausberger T, Somogyi P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science (New York, N.Y.). 321 [PubMed]

Koch C. (1998). Biophysics of Computation: Information Processing in Single Neurons.

Koch C, Douglas R, Wehmeier U. (1990). Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 10 [PubMed]

Koch C, Poggio T. (1985). The synaptic veto mechanism: Does it underlie direction and orientation selectivity in the visual cortex? Models Of The Visual Cortex.

Koch C, Poggio T, Torre V. (1983). Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proceedings of the National Academy of Sciences of the United States of America. 80 [PubMed]

Koch C, Segev I. (2000). The role of single neurons in information processing. Nature neuroscience. 3 Suppl [PubMed]

Kole MH, Hallermann S, Stuart GJ. (2006). Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Komaki A et al. (2007). Effects of GABAergic inhibition on neocortical long-term potentiation in the chronically prepared rat. Neuroscience letters. 422 [PubMed]

Larkum ME, Zhu JJ, Sakmann B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 398 [PubMed]

Le Bé JV, Silberberg G, Wang Y, Markram H. (2007). Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Ledergerber D, Larkum ME. (2010). Properties of layer 6 pyramidal neuron apical dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Liu G. (2004). Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nature neuroscience. 7 [PubMed]

Llinás R, Nicholson C, Freeman JA, Hillman DE. (1968). Dendritic spikes and their inhibition in alligator Purkinje cells. Science (New York, N.Y.). 160 [PubMed]

London M, Häusser M. (2005). Dendritic computation. Annual review of neuroscience. 28 [PubMed]

Lovett-Barron M et al. (2012). Regulation of neuronal input transformations by tunable dendritic inhibition. Nature neuroscience. 15 [PubMed]

Lynch MA. (2004). Long-term potentiation and memory. Physiological reviews. 84 [PubMed]

MacDonald JF, Jackson MF, Beazely MA. (2006). Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Critical reviews in neurobiology. 18 [PubMed]

Magee JC. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Magee JC et al. (1995). Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. Journal of neurophysiology. 74 [PubMed]

Magee JC, Johnston D. (2005). Plasticity of dendritic function. Current opinion in neurobiology. 15 [PubMed]

Malenka RC. (1991). The role of postsynaptic calcium in the induction of long-term potentiation. Molecular neurobiology. 5 [PubMed]

Malenka RC, Nicoll RA. (1993). NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends in neurosciences. 16 [PubMed]

Mariño J et al. (2005). Invariant computations in local cortical networks with balanced excitation and inhibition. Nature neuroscience. 8 [PubMed]

Markram H et al. (2004). Interneurons of the neocortical inhibitory system. Nature reviews. Neuroscience. 5 [PubMed]

Markram H, Wang Y, Tsodyks M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America. 95 [PubMed]

Megías M, Emri Z, Freund TF, Gulyás AI. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience. 102 [PubMed]

Mel BW, Schiller J. (2004). On the fight between excitation and inhibition: location is everything. Science's STKE : signal transduction knowledge environment. 2004 [PubMed]

Merchán-Pérez A, Rodriguez JR, Alonso-Nanclares L, Schertel A, Defelipe J. (2009). Counting Synapses Using FIB/SEM Microscopy: A True Revolution for Ultrastructural Volume Reconstruction. Frontiers in neuroanatomy. 3 [PubMed]

Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF. (1996). Differences between somatic and dendritic inhibition in the hippocampus. Neuron. 16 [PubMed]

Monier C, Fournier J, Frégnac Y. (2008). In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. Journal of neuroscience methods. 169 [PubMed]

Murayama M, Larkum ME. (2009). Enhanced dendritic activity in awake rats. Proceedings of the National Academy of Sciences of the United States of America. 106 [PubMed]

Murayama M et al. (2009). Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature. 457 [PubMed]

Palmer LM et al. (2012). The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science (New York, N.Y.). 335 [PubMed]

Polsky A, Mel BW, Schiller J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nature neuroscience. 7 [PubMed]

Pouille F, Scanziani M. (2004). Routing of spike series by dynamic circuits in the hippocampus. Nature. 429 [PubMed]

RALL W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental neurology. 1 [PubMed]

Rall W. (1964). Theoretical significance of dendritic trees for neuronal input output relations Neural Theory and Modeling.

Rall W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. Journal of neurophysiology. 30 [PubMed]

Rall W, Rinzel J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophysical journal. 13 [PubMed]

Rhodes P. (2006). The properties and implications of NMDA spikes in neocortical pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Rinzel J, Rall W. (1974). Transient response in a dendritic neuron model for current injected at one branch. Biophysical journal. 14 [PubMed]

Runyan CA et al. (2010). Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex. Neuron. 67 [PubMed]

Sarid L, Bruno R, Sakmann B, Segev I, Feldmeyer D. (2007). Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]

Schiller J, Major G, Koester HJ, Schiller Y. (2000). NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature. 404 [PubMed]

Schiller J, Schiller Y, Stuart G, Sakmann B. (1997). Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. The Journal of physiology. 505 ( Pt 3) [PubMed]

Sejnowski TJ. (2009). Consequences of non-uniform active currents in dendrites. Frontiers in neuroscience. 3 [PubMed]

Silberberg G, Markram H. (2007). Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron. 53 [PubMed]

Sjöström PJ, Rancz EA, Roth A, Häusser M. (2008). Dendritic excitability and synaptic plasticity. Physiological reviews. 88 [PubMed]

Spruston N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nature reviews. Neuroscience. 9 [PubMed]

Stuart G, Spruston N. (1998). Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Tepper JM, Koós T, Wilson CJ. (2004). GABAergic microcircuits in the neostriatum. Trends in neurosciences. 27 [PubMed]

Thomson AM, Deuchars J. (1997). Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cerebral cortex (New York, N.Y. : 1991). 7 [PubMed]

Traub RD, Wong RK, Miles R, Michelson H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology. 66 [PubMed]

Tsien RW, Noble D, Jack JJB. (1975). Electric Current Flow in Excitable Cells.

Vierling-Claassen D, Cardin JA, Moore CI, Jones SR. (2010). Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons. Frontiers in human neuroscience. 4 [PubMed]

Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H. (2002). Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral cortex (New York, N.Y. : 1991). 12 [PubMed]

Williams SR. (2004). Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nature neuroscience. 7 [PubMed]

References and models that cite this paper

Barkai O, Butterman R, Katz B, Lev S, Binshtok AM. (2020). The Input-Output Relation of Primary Nociceptive Neurons is Determined by the Morphology of the Peripheral Nociceptive Terminals. The Journal of neuroscience : the official journal of the Society for Neuroscience. 40 [PubMed]

Bilash OM, Chavlis S, Johnson CD, Poirazi P, Basu J. (2023). Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. Cell reports. 42 [PubMed]

Bloss EB et al. (2016). Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells. Neuron. 89 [PubMed]

Bono J, Clopath C. (2017). Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nature communications. 8 [PubMed]

Dorman DB, Jędrzejewska-Szmek J, Blackwell KT. (2018). Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. eLife. 7 [PubMed]

Doron M, Chindemi G, Muller E, Markram H, Segev I. (2017). Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell reports. 21 [PubMed]

Du K et al. (2017). Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proceedings of the National Academy of Sciences of the United States of America. 114 [PubMed]

Egger R et al. (2015). Robustness of sensory-evoked excitation is increased by inhibitory inputs to distal apical tuft dendrites. Proceedings of the National Academy of Sciences of the United States of America. 112 [PubMed]

Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC. (2017). Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells. Nature neuroscience. 20 [PubMed]

Hay E, Segev I. (2015). Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cerebral cortex (New York, N.Y. : 1991). 25 [PubMed]

Hiratani N, Fukai T. (2017). Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37 [PubMed]

Kim H, Jones KE, Heckman CJ. (2014). Asymmetry in signal propagation between the soma and dendrites plays a key role in determining dendritic excitability in motoneurons. PloS one. 9 [PubMed]

Kubota Y et al. (2015). Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. eLife. 4 [PubMed]

Müllner FE, Wierenga CJ, Bonhoeffer T. (2015). Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time. Neuron. 87 [PubMed]

Poleg-Polsky A. (2015). Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-Spikes. PloS one. 10 [PubMed]

Wilmes KA, Sprekeler H, Schreiber S. (2016). Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS computational biology. 12 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.