Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)


Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]

See more from authors: Solinas S · Forti L · Cesana E · Mapelli J · De Schutter E · D'Angelo E

References and models cited by this paper

Achard P, De Schutter E. (2006). Complex parameter landscape for a complex neuron model. PLoS computational biology. 2 [PubMed]

Afshari FS et al. (2004). Resurgent Na currents in four classes of neurons of the cerebellum. Journal of neurophysiology. 92 [PubMed]

Alonso A, Llinás RR. (1989). Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature. 342 [PubMed]

Bennett BD, Callaway JC, Wilson CJ. (2000). Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Bevan MD, Wilson CJ. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Bond CT, Maylie J, Adelman JP. (2005). SK channels in excitability, pacemaking and synaptic integration. Current opinion in neurobiology. 15 [PubMed]

Buzsaki G. (2006). Rhythms of the Brain.

Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. Journal of neurophysiology. 71 [PubMed]

De Schutter E, Smolen P. (1998). Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks.

Destexhe A, Contreras D, Sejnowski TJ, Steriade M. (1994). A model of spindle rhythmicity in the isolated thalamic reticular nucleus. Journal of neurophysiology. 72 [PubMed]

Dickson CT, Magistretti J, Shalinsky M, Hamam B, Alonso A. (2000). Oscillatory activity in entorhinal neurons and circuits. Mechanisms and function. Annals of the New York Academy of Sciences. 911 [PubMed]

Dickson CT et al. (2000). Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. Journal of neurophysiology. 83 [PubMed]

Dieudonne S. (1998). Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. The Journal of physiology. 510 ( Pt 3) [PubMed]

Druckmann S et al. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in neuroscience. 1 [PubMed]

Forti L, Cesana E, Mapelli J, D'Angelo E. (2006). Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. The Journal of physiology. 574 [PubMed]

Gabbiani F, Midtgaard J, Knöpfel T. (1994). Synaptic integration in a model of cerebellar granule cells. Journal of neurophysiology. 72 [PubMed]

Geurts FJ, Timmermans J, Shigemoto R, De Schutter E. (2001). Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum. Neuroscience. 104 [PubMed]

Golgi C. (). Sulla fina anatomia degli organi centrali del sistema nervoso IV. Sulla fina anatomia delle circonvoluzioni cerebellari Riv Sper Freniatr Med Leg Alien Ment. 9

Gutfreund Y, yarom Y, Segev I. (1995). Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. The Journal of physiology. 483 ( Pt 3) [PubMed]

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Hallworth NE, Wilson CJ, Bevan MD. (2003). Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Hines ML, Carnevale NT. (2001). NEURON: a tool for neuroscientists. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 7 [PubMed]

Hirschberg B, Maylie J, Adelman JP, Marrion NV. (1998). Gating of recombinant small-conductance Ca-activated K+ channels by calcium. The Journal of general physiology. 111 [PubMed]

Huguenard JR, McCormick DA. (1992). Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. Journal of neurophysiology. 68 [PubMed]

Hutcheon B, Yarom Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in neurosciences. 23 [PubMed]

Ito M, Eccles JC, Szentagothai J. (1967). The Cerebellum as a Neuronal Machine.

Jaeger D, De Schutter E, Bower JM. (1997). The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Koch C. (1999). Biophysics Of Computation: Information Processing in Single Neurons.

Koch C, Adams PR, Yamada WM. (1998). Multiple channels and calcium dynamics. Methods In Neuronal Modeling: From Synapses To Networks.

Llinás R, Yarom Y. (1986). Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. The Journal of physiology. 376 [PubMed]

Llinás RR. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science (New York, N.Y.). 242 [PubMed]

Lüthi A, McCormick DA. (1998). H-current: properties of a neuronal and network pacemaker. Neuron. 21 [PubMed]

Maex R, De Schutter E. (1998). Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. Journal of neurophysiology. 80 [PubMed]

Magistretti J, Castelli L, Forti L, D'Angelo E. (2006). Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study. The Journal of physiology. 573 [PubMed]

Marr D. (1969). A theory of cerebellar cortex. The Journal of physiology. 202 [PubMed]

Marrion NV, Tavalin SJ. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature. 395 [PubMed]

McCormick DA, Huguenard JR. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of neurophysiology. 68 [PubMed]

McCormick DA, Pape HC. (1990). Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. The Journal of physiology. 431 [PubMed]

Miles FA, Fuller JH, Braitman DJ, Dow BM. (1980). Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. Journal of neurophysiology. 43 [PubMed]

Neher E. (1995). Single Channel Recording.

Nieus T et al. (2006). LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. Journal of neurophysiology. 95 [PubMed]

Pape HC, Driesang RB. (1998). Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. Journal of neurophysiology. 79 [PubMed]

Pennartz CM, Bierlaagh MA, Geurtsen AM. (1997). Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current. Journal of neurophysiology. 78 [PubMed]

Raman IM, Bean BP. (1997). Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Roth A, Häusser M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. The Journal of physiology. 535 [PubMed]

Santoro B et al. (2000). Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Shin SL et al. (2007). Regular patterns in cerebellar Purkinje cell simple spike trains. PloS one. 2 [PubMed]

Simat M, Parpan F, Fritschy JM. (2007). Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. The Journal of comparative neurology. 500 [PubMed]

Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]

Stocker M. (2004). Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nature reviews. Neuroscience. 5 [PubMed]

Stocker M, Pedarzani P. (2000). Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Molecular and cellular neurosciences. 15 [PubMed]

Surmeier DJ, Mercer JN, Chan CS. (2005). Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Current opinion in neurobiology. 15 [PubMed]

Tahon K, Volny-Luraghi A, De Schutter E. (2005). Temporal characteristics of tactile stimuli influence the response profile of cerebellar Golgi cells. Neuroscience letters. 390 [PubMed]

Tatulian L, Delmas P, Abogadie FC, Brown DA. (2001). Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Traub RD. (1982). Simulation of intrinsic bursting in CA3 hippocampal neurons. Neuroscience. 7 [PubMed]

Traub RD, Llinás R. (1979). Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. Journal of neurophysiology. 42 [PubMed]

Traub RD, Wong RK, Miles R, Michelson H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology. 66 [PubMed]

Vanier MC, Bower JM. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of computational neuroscience. 7 [PubMed]

Wilson CJ, Callaway JC. (2000). Coupled oscillator model of the dopaminergic neuron of the substantia nigra. Journal of neurophysiology. 83 [PubMed]

References and models that cite this paper

Ait Ouares K, Filipis L, Tzilivaki A, Poirazi P, Canepari M. (2019). Two Distinct Sets of Ca2+ and K+ Channels Are Activated at Different Membrane Potentials by the Climbing Fiber Synaptic Potential in Purkinje Neuron Dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 39 [PubMed]

Anwar H, Hepburn I, Nedelescu H, Chen W, De Schutter E. (2013). Stochastic calcium mechanisms cause dendritic calcium spike variability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Anwar H, Hong S, De Schutter E. (2012). Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cells. Cerebellum (London, England). 11 [PubMed]

Anwar H et al. (2014). Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models. Frontiers in cellular neuroscience. 8 [PubMed]

De Schutter E, Simoes-de-Souza FM. (2011). Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits. 1:7

Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PloS one. 6 [PubMed]

Diwakar S, Magistretti J, Goldfarb M, Naldi G, D'Angelo E. (2009). Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. Journal of neurophysiology. 101 [PubMed]

Diwakar S, Parasuram H, Nair B, Medini C, Nair M. (2017). Computational Neuroscience of Timing, Plasticity and Function in Cerebellum Microcircuits (Chapter 12) Computational Neurology and Psychiatry, Springer Series in Bio-/Neuroinformatics.

Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]

Geminiani A, Casellato C, D'Angelo E, Pedrocchi A. (2019). Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models. Frontiers in computational neuroscience. 13 [PubMed]

Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]

Gleeson P et al. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS computational biology. 6 [PubMed]

Masoli S, Ottaviani A, Casali S, D'Angelo E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS computational biology. 16 [PubMed]

Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]

Parasuram H et al. (2016). Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim. Frontiers in computational neuroscience. 10 [PubMed]

Schwarzacher SW, Cuntz H, Jedlicka P, Beining M, Mongiat LA. (2017). T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells eLife.

Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]

Torben-Nielsen B, Segev I, Yarom Y. (2012). The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations. PLoS computational biology. 8 [PubMed]

Vervaeke K et al. (2010). Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 67 [PubMed]

Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]

See more from authors: Solinas S · Forti L · Cesana E · Mapelli J · De Schutter E · D'Angelo E

References and models cited by this paper

Buzsaki G. (2006). Rhythms of the Brain.

Chadderton P, Margrie TW, Häusser M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428 [PubMed]

D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

De Schutter E. (2002). Cerebellar cortex: computation by extrasynaptic inhibition? Current biology : CB. 12 [PubMed]

De Schutter E, Bjaalie JG. (2001). Coding in the granular layer of the cerebellum. Progress in brain research. 130 [PubMed]

De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. Journal of neurophysiology. 71 [PubMed]

Dieudonne S. (1998). Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. The Journal of physiology. 510 ( Pt 3) [PubMed]

Dumoulin A, Triller A, Dieudonné S. (2001). IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Edgley SA, Lidierth M. (1987). The discharges of cerebellar Golgi cells during locomotion in the cat. The Journal of physiology. 392 [PubMed]

Forti L, Cesana E, Mapelli J, D'Angelo E. (2006). Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. The Journal of physiology. 574 [PubMed]

Golgi C. (). Sulla fina anatomia degli organi centrali del sistema nervoso IV. Sulla fina anatomia delle circonvoluzioni cerebellari Riv Sper Freniatr Med Leg Alien Ment. 9

Gutfreund Y, yarom Y, Segev I. (1995). Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. The Journal of physiology. 483 ( Pt 3) [PubMed]

Hartmann MJ, Bower JM. (1998). Oscillatory activity in the cerebellar hemispheres of unrestrained rats. Journal of neurophysiology. 80 [PubMed]

Hartmann MJ, Bower JM. (2001). Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Holtzman T, Mostofi A, Phuah CL, Edgley SA. (2006). Cerebellar Golgi cells in the rat receive multimodal convergent peripheral inputs via the lateral funiculus of the spinal cord. The Journal of physiology. 577 [PubMed]

Holtzman T, Rajapaksa T, Mostofi A, Edgley SA. (2006). Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. The Journal of physiology. 574 [PubMed]

Hutcheon B, Yarom Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in neurosciences. 23 [PubMed]

Ito M, Eccles JC, Szentagothai J. (1967). The Cerebellum as a Neuronal Machine.

Jacobson GA et al. (2005). Subthreshold voltage noise of rat neocortical pyramidal neurones. The Journal of physiology. 564 [PubMed]

Jaeger D, Bower JM. (1999). Synaptic control of spiking in cerebellar Purkinje cells: dynamic current clamp based on model conductances. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Jaeger D, De Schutter E, Bower JM. (1997). The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Kase M, Miller DC, Noda H. (1980). Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. The Journal of physiology. 300 [PubMed]

Kistler WM, De Zeeuw CI. (2003). Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum (London, England). 2 [PubMed]

Kleinfeld D, Ahissar E, Diamond ME. (2006). Active sensation: insights from the rodent vibrissa sensorimotor system. Current opinion in neurobiology. 16 [PubMed]

Koch C. (1999). Biophysics Of Computation: Information Processing in Single Neurons.

Koch C, Adams PR, Yamada WM. (1998). Multiple channels and calcium dynamics. Methods In Neuronal Modeling: From Synapses To Networks.

Llinás RR. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science (New York, N.Y.). 242 [PubMed]

Maex R, De Schutter E. (1998). Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. Journal of neurophysiology. 80 [PubMed]

Maex R, De Schutter E. (2005). Oscillations in the cerebellar cortex: a prediction of their frequency bands. Progress in brain research. 148 [PubMed]

Maex R, Vos BP, De Schutter E. (2000). Weak common parallel fibre synapses explain the loose synchrony observed between rat cerebellar golgi cells. The Journal of physiology. 523 Pt 1 [PubMed]

Mapelli J, D'Angelo E. (2007). The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Marr D. (1969). A theory of cerebellar cortex. The Journal of physiology. 202 [PubMed]

Medina JF, Mauk MD. (2000). Computer simulation of cerebellar information processing. Nature neuroscience. 3 Suppl [PubMed]

Miles FA, Fuller JH, Braitman DJ, Dow BM. (1980). Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. Journal of neurophysiology. 43 [PubMed]

Morissette J, Bower JM. (1996). Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Experimental brain research. 109 [PubMed]

Palay SL, Chan-palay V. (1974). Cerebellar Cortex Cytology And Organization.

Pellerin JP, Lamarre Y. (1997). Local field potential oscillations in primate cerebellar cortex during voluntary movement. Journal of neurophysiology. 78 [PubMed]

Puil E, Gimbarzevsky B, Miura RM. (1986). Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. Journal of neurophysiology. 55 [PubMed]

Rossi DJ, Hamann M, Attwell D. (2003). Multiple modes of GABAergic inhibition of rat cerebellar granule cells. The Journal of physiology. 548 [PubMed]

Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]

Stocker M. (2004). Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nature reviews. Neuroscience. 5 [PubMed]

Tahon K, Volny-Luraghi A, De Schutter E. (2005). Temporal characteristics of tactile stimuli influence the response profile of cerebellar Golgi cells. Neuroscience letters. 390 [PubMed]

Volny-Luraghi A, Maex R, Vos B, De Schutter E. (2002). Peripheral stimuli excite coronal beams of Golgi cells in rat cerebellar cortex. Neuroscience. 113 [PubMed]

Vos BP, Maex R, Volny-Luraghi A, De Schutter E. (1999). Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Vos BP, Volny-Luraghi A, De Schutter E. (1999). Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. The European journal of neuroscience. 11 [PubMed]

Vos BP, Volny-Luraghi A, Maex R, De Schutter E. (2000). Precise spike timing of tactile-evoked cerebellar Golgi cell responses: a reflection of combined mossy fiber and parallel fiber activation? Progress in brain research. 124 [PubMed]

Walter JT, Alviña K, Womack MD, Chevez C, Khodakhah K. (2006). Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nature neuroscience. 9 [PubMed]

References and models that cite this paper

Diwakar S, Magistretti J, Goldfarb M, Naldi G, D'Angelo E. (2009). Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. Journal of neurophysiology. 101 [PubMed]

Geminiani A, Casellato C, D'Angelo E, Pedrocchi A. (2019). Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models. Frontiers in computational neuroscience. 13 [PubMed]

Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]

Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. (2019). Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Frontiers in computational neuroscience. 13 [PubMed]

Masoli S, Ottaviani A, Casali S, D'Angelo E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS computational biology. 16 [PubMed]

Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]

Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.