Current: I T low threshold

"Transient"; rapidly inactivating, threshold negative to -65mV

  1. A biophysical model of thalamocortical network switching under propofol (Soplata et al., 2023)
  2. A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
  3. A multi-compartment model for interneurons in the dLGN (Halnes et al. 2011)
  4. A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
  5. A single column thalamocortical network model (Traub et al 2005)
  6. A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
  7. A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
  8. Action potential of mouse urinary bladder smooth muscle (Mahapatra et al 2018)
  9. Activity constraints on stable neuronal or network parameters (Olypher and Calabrese 2007)
  10. Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002)
  11. Activity dependent conductances in a neuron model (Liu et al. 1998)
  12. Activity patterns in a subthalamopallidal network of the basal ganglia model (Terman et al 2002)
  13. Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
  14. Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
  15. Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
  16. Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
  17. Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
  18. Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
  19. Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
  20. Allen Institute: Nr5a1-Cre VISp layer 4 329322394
  21. Allen Institute: Nr5a1-Cre VISp layer 4 472306544
  22. Allen Institute: Nr5a1-Cre VISp layer 4 472442377
  23. Allen Institute: Nr5a1-Cre VISp layer 4 472451419
  24. Allen Institute: Nr5a1-Cre VISp layer 4 472915634
  25. Allen Institute: Nr5a1-Cre VISp layer 4 473834758
  26. Allen Institute: Nr5a1-Cre VISp layer 4 473863035
  27. Allen Institute: Nr5a1-Cre VISp layer 4 473871429
  28. Allen Institute: Ntsr1-Cre VISp layer 4 472430904
  29. Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
  30. Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
  31. Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
  32. Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
  33. Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
  34. Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
  35. Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
  36. Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
  37. Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
  38. Allen Institute: Rbp4-Cre VISp layer 5 472424854
  39. Allen Institute: Rbp4-Cre VISp layer 6a 473871592
  40. Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
  41. Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
  42. Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
  43. Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
  44. Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
  45. Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
  46. Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
  47. Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
  48. Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
  49. Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
  50. Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
  51. Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
  52. Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
  53. Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
  54. Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
  55. Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
  56. Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
  57. Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
  58. Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
  59. Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
  60. Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
  61. Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
  62. Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
  63. Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
  64. Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)
  65. AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
  66. Apical Length Governs Computational Diversity of Layer 5 Pyramidal Neurons (Galloni et al 2020)
  67. Availability of low-threshold Ca2+ current in retinal ganglion cells (Lee SC et al. 2003)
  68. Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
  69. Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
  70. Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012)
  71. Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
  72. Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
  73. CA1 pyramidal neuron (Combe et al 2018)
  74. CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
  75. CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008)
  76. CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)
  77. CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
  78. CA3 pyramidal neuron (Lazarewicz et al 2002)
  79. CA3 Pyramidal Neuron (Migliore et al 1995)
  80. CA3 pyramidal neuron (Safiulina et al. 2010)
  81. CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
  82. Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
  83. Calcium spikes in basal dendrites (Kampa and Stuart 2006)
  84. Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
  85. Cell-type specific integration of feedforward and feedback synaptic inputs (Ridner et al, 2022)
  86. Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
  87. Cerebellar nuclear neuron (Sudhakar et al., 2015)
  88. Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
  89. Cerebellar purkinje cell (De Schutter and Bower 1994)
  90. Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001)
  91. Channel density variability among CA1 neurons (Migliore et al. 2018)
  92. Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
  93. Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)
  94. Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
  95. Computational modeling of ultrasonic Subthalamic Nucleus stimulation (Tarnaud et al 2019)
  96. Computer model of clonazepam's effect in thalamic slice (Lytton 1997)
  97. Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008)
  98. Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
  99. Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
  100. Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
  101. Current Dipole in Laminar Neocortex (Lee et al. 2013)
  102. Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
  103. Decorrelation in the developing visual thalamus (Tikidji-Hamburyan et al, accepted)
  104. Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
  105. Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999)
  106. Dentate gyrus network model (Santhakumar et al 2005)
  107. Dentate gyrus network model (Tejada et al 2014)
  108. Depolarization Enhacement of Dendritic Spike Propagation (Bock et al 2022)
  109. Determinants of the intracellular and extracellular waveforms in DA neurons (Lopez-Jury et al 2018)
  110. Differences between type A and B photoreceptors (Blackwell 2006)
  111. Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
  112. Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017)
  113. Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020)
  114. Dynamical assessment of ion channels during in vivo-like states (Guet-McCreight & Skinner 2020)
  115. Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011)
  116. Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
  117. Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
  118. Excitability of PFC Basal Dendrites (Acker and Antic 2009)
  119. Failure of Deep Brain Stimulation in a basal ganglia neuronal network model (Dovzhenok et al. 2013)
  120. Frog second-order vestibular neuron models (Rossert et al. 2011)
  121. Global structure, robustness, and modulation of neuronal models (Goldman et al. 2001)
  122. High frequency stimulation of the Subthalamic Nucleus (Rubin and Terman 2004)
  123. Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)
  124. Hyperexcitability from Nav1.2 channel loss in neocortical pyramidal cells (Spratt et al 2021)
  125. Hypocretin and Locus Coeruleus model neurons (Carter et al 2012)
  126. Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
  127. IA and IT interact to set first spike latency (Molineux et al 2005)
  128. Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
  129. Inferior Olive, subthreshold oscillations (Torben-Nielsen, Segev, Yarom 2012)
  130. Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
  131. Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
  132. Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008)
  133. Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
  134. KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
  135. L2/3 V1 Pyramidal Cell model (modified Park et al., 2019; a/n: 231185) (Petousakis et al., 2023)
  136. L5 PFC pyramidal neurons (Papoutsi et al. 2017)
  137. L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
  138. Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
  139. Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
  140. LCN-HippoModel: model of CA1 PCs deep-superficial theta firing dynamics (Navas-Olive et al 2020)
  141. LGMD with 3D morphology and active dendrites (Dewell & Gabbiani 2018)
  142. Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
  143. Long-Term Inactivation of Na+ Channels as a Mech of Adaptation in CA1 Pyr Cells (Upchurch et al '22)
  144. Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
  145. Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) (Brian)
  146. Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
  147. Medial vestibular neuron models (Quadroni and Knopfel 1994)
  148. MEG of Somatosensory Neocortex (Jones et al. 2007)
  149. Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
  150. Midbrain torus semicircularis neuron model (Aumentado-Armstrong et al. 2015)
  151. Model of the cerebellar granular network (Sudhakar et al 2017)
  152. Multiplexed coding in Purkinje neuron dendrites (Zang and De Schutter 2021)
  153. Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
  154. Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
  155. MyFirstNEURON (Houweling, Sejnowski 1997)
  156. Neuronal dendrite calcium wave model (Neymotin et al, 2015)
  157. NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
  158. Nodose sensory neuron (Schild et al. 1994, Schild and Kunze 1997)
  159. O-LM interneuron model (Lawrence et al. 2006)
  160. Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007)
  161. Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
  162. Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2018)
  163. Paradoxical GABA-mediated excitation (Lewin et al. 2012)
  164. Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011)
  165. Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
  166. Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
  167. Pyramidal Neuron Deep: Constrained by experiment (Dyhrfjeld-Johnsen et al. 2005)
  168. Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
  169. Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001)
  170. Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016)
  171. Rat phrenic motor neuron (Amini et al 2004)
  172. Rat subthalamic projection neuron (Gillies and Willshaw 2006)
  173. Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21)
  174. Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010)
  175. Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013)
  176. Robust and tunable bursting requires slow positive feedback (Franci et al 2018)
  177. Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
  178. Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017)
  179. Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016)
  180. SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
  181. Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
  182. Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
  183. Simulation study of Andersen-Tawil syndrome (Sung et al 2006)
  184. Single neuron models of four types of L1 mouse Interneurons: Canpy, NGFC, alpha7 and VIP cells
  185. Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
  186. Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
  187. Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell)
  188. STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
  189. STDP depends on dendritic synapse location (Letzkus et al. 2006)
  190. Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013)
  191. Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
  192. Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
  193. Striatum D1 Striosome and Matrix Upstates (Prager et al., 2020)
  194. Study of augmented Rubin and Terman 2004 deep brain stim. model in Parkinsons (Pascual et al. 2006)
  195. Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011)
  196. Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
  197. Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
  198. T channel currents (Vitko et al 2005)
  199. T-type Ca current in thalamic neurons (Wang et al 1991)
  200. T-type Calcium currents (McRory et al 2001)
  201. Thalamic interneuron multicompartment model (Zhu et al. 1999)
  202. Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)
  203. Thalamic quiescence of spike and wave seizures (Lytton et al 1997)
  204. Thalamic Relay Neuron: I-T current (Williams, Stuart 2000)
  205. Thalamic Reticular Network (Destexhe et al 1994)
  206. Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996)
  207. Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
  208. Thalamocortical loop with delay for investigation of absence epilepsy (Liu et al 2019)
  209. Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
  210. Thalamocortical augmenting response (Bazhenov et al 1998)
  211. Thalamocortical model of spike and wave seizures (Suffczynski et al. 2004)
  212. Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018)
  213. Thalamocortical relay neuron models constrained by experiment and optimization (Iavarone et al 2019)
  214. Thalamocortical sleep model (Krishnan et al., 2016)
  215. The microcircuits of striatum in silico (Hjorth et al 2020)
  216. The origin of different spike and wave-like events (Hall et al 2017)
  217. The STN-GPe network; subthalamic nucleus, prototypic GPe, and arkypallidal GPe neurons (Kitano 2023)
  218. The subcellular distribution of T-type Ca2+ channels in LGN interneurons (Allken et al. 2014)
  219. Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
  220. Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit (Ponzi et al. 2023)
  221. Two-cell inhibitory network bursting dynamics captured in a one-dimensional map (Matveev et al 2007)
  222. Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
  223. Using Strahler's analysis to reduce realistic models (Marasco et al, 2013)
  224. Ventromedial Thalamocortical Neuron (Bichler et al 2021)
  225. Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
  226. VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
Top authors for I T low threshold:
Top concepts studied with I T low threshold:
Top neurons studied with I T low threshold:
Top currents studied with I T low threshold:
Top references cited by these models:
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.